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1. Introduction and motivation

This chapter serves as a collection of motivations for the study of kernel-based meth-
ods and as an introduction of the topic covered in the course. The presentation is
intentionally not always rigorous, since the various details will be discussed in the
following chapters.

1.1 Definitions of kernel and positivity classes

We start by defining the fundamental object of this course.

Definition 1.1. Let Ω be a nonempty set. A real valued kernel on Ω is a symmetric function
K : Ω× Ω→ R. A complex valued kernel on Ω is an hermitian function K : Ω× Ω→ C.

The distinction between real and complex valued kernels is important, since they
satisfy different symmetry properties and they lead to a different analysis. But we
will use complex valued kernel only for theoretical results, so we will always assume
that kernels are real valued if not explicitly stated.

An important fact is that Ω can be a general set (e.g., a set of strings or graphs or
images). This is particularly interesting in the case of pattern analysis, while the main
results for interpolation applies to Ω ⊂ Rd.

We will consider special classes of kernels, defined as follows.

Definition 1.2 (Positivity classes). Let Ω be a nonempty set. For all N ∈ N and for a set
of N pairwise distinct elements XN := {xi}Ni=1 ⊂ Ω define the kernel matrix (or Gramian
matrix) A := AK,XN ∈ RN×N as A := [K(xi, xj)]

N
i,j=1.

A kernel K on Ω is positive definite (PD) on Ω if for all N ∈ N, for any set of N pairwise
distinct elements XN := {xi}Ni=1 ⊂ Ω the kernel matrix is positive semidefinite, i.e., for all
vectors α := {αi}Ni=1 ∈ RN it holds

αTAα =
N∑

i,j=1

αiαjK(xi, xj) ≥ 0.

The kernel is strictly positive definite (SPD) if the kernel matrix is positive definite, i.e.,
the inequality holds with “>” when α 6= 0.

Notation warning: some authors (including H. Wendland) denote as “positive
definite” what we call here “strictly positive definite”. This is because positive def-
inite kernels are useful mainly in pattern analysis, so sometimes there is no need to
stress the difference if dealing only with interpolation or PDE solution.

There is also another interesting positivity class, namely conditionally (strictly)
positive definite kernels (C(S)PD), but we will introduce it later.

1
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1.2 Why we are interested in kernels

We look at two class of problems which lead quite naturally to the use of kernels.

1.2.1 Multivariate scattered (or meshless) interpolation

Problem 1.3. Let Ω ⊂ Rd. Given a set XN := {xi}Ni=1 ⊂ Ω of pairwise distinct points and
target values {fi}Ni=1 ⊂ R, find a continuous function s : Ω → R such that s(xi) = fi,
1 ≤ i ≤ N .

Here multivariate means that we want to deal with generic d ≥ 1, while meshless
or scattered means that the points XN can be arbitrarily unstructured (e.g., they don’t
need to form a grid).

The problem is well understood if d = 1 (univariate interpolation). In this case
different techniques are possible: e.g. (see Numerik I) Problem 1.3 can be solved by
polynomial interpolation of degree N − 1. The process works as follows: we can
fix an approximation space V := PN−1 (which is a linear, N -dimensional space with
V ⊂ C(R)) and look for an interpolant s ∈ V . If we fix a basis {φj}Nj=1 of V , e.g. the
monomial basis φj(x) := xj−1, 1 ≤ j ≤ N , we have that

s(x) :=
N∑
j=1

αjφj(x), (1.1)

where the coefficients {αj}Nj=1 can be computed from the N interpolation conditions
of Problem 1.3, that is

s(xi) = fi, 1 ≤ i ≤ N. (1.2)

The ansatz (1.1) and the interpolation conditions (1.2) can be put together to obtain a
linear system

Aφ,XNα :=


φ1(x1) φ2(x1) . . . φN(x1)
φ1(x2) φ2(x2) . . . φN(x2)

...
...

...
...

φ1(xN) φ2(xN) . . . φN(xN)



α1

α2
...
αN

 =


f1

f2
...
fN

 .
In this case (polynomial interpolation in d = 1 using the monomial basis) the interpo-
lation matrix Aφ,XN is the Vandermonde matrix, i.e.,

Aφ,XN =


1 x1 . . . xN−1

1

1 x2 . . . xN−1
2

...
...

...
...

1 xN . . . xN−1
N


which is known to be invertible for any arbitrary set XN of pairwise distinct points.

Putting all together: in the case d = 1 it is possible to solve Problem 1.3. In details:
it is possible to do the following
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• fix a suitable linear space V ⊂ C(Ω)

• prove that there exists a unique s ∈ V with s(xi) = fi, 1 ≤ i ≤ N , for all possible
XN and {fi}Ni=1

• the function s can be computed by solving a linear system

• the linear system has a unique solution since AΦ,XN is invertible for all XN .

This space V is the prototype of an Haar space as in the following definition.

Definition 1.4 (Haar space). Let Ω ⊂ Rd contain at least N points and V ⊂ C(Ω) be an N -
dimensional linear space. Then V is called an Haar space of dimension N on Ω if for arbitrary
distinct points {xi}Ni=1 ⊂ Ω and arbitrary {fi}Ni=1 ⊂ R, there exist a unique function s ∈ V
with s(xi) = fi for 1 ≤ i ≤ N .

We first see that this notion indeed corresponds to the above discussion (Property
(ii) is stated for completeness).

Proposition 1.5. Under the assumptions of Definition 1.4, the following are equivalent:

i) V is an N -dimensional Haar space on Ω;

ii) Every v ∈ V \ {0} has at most N − 1 distinct zeros;

iii) For any set of pairwise distinct points XN ⊂ Ω and any basis {φj}Nj=1 of V , the interpo-
lation matrix Aφ,XN is invertible.

Proof. (i)⇒(ii) Assume that V is an Haar space and that there exists v ∈ V \{0}withN
distinct zeros XN ⊂ Ω, and define u := 0 (u ∈ V since V is a linear space). Then
both u and v are distinct interpolants in V with target values fi := 0, 1 ≤ i ≤ 0,
which is a contradiction to the definition of Haar space.

(ii)⇒(iii) Assume there exists a set XN ⊂ Ω of pairwise distinct points and a basis
{φj}Nj=1 of V such that Aφ,XN is singular. Then there exists a vector α ∈ RN \ {0}
such that Aφ,XNα = 0. Since α 6= 0, the function v(x) :=

∑N
j=1 αjφj(x) is not the

zero function, but v(xi) =
∑N

j=1 αjφj(xi) = (Aφ,XNα)i = 0 (i-th row), 1 ≤ i ≤ N ,
so v has N distinct zeros.

(iii)⇔(i) Aφ,XN is nonsingular if and only if Aφ,XNα = b has a unique solution α for
b := [fi]

N
i=1, if and only if

∑N
j=1 αjφj(xi) = fi has a unique solution α, if and only

if s(x) :=
∑N

j=1 αjφj(x) is the unique interpolant.

Coming back to Problem (1.3), it seems natural to ask: is there any Haar space in
dimension d > 1? How to characterize them? How to choose a suitable one? Indeed,
such spaces don’t even exist!
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Theorem 1.6 (Mairhuber-Curtis). Let Ω ⊂ Rd, d > 1, be a set with nonempty interior (i.e.,
there exists x0 ∈ Ω and ε > 0 such that B(x0, ε) ⊂ Ω). Then there exist no Haar space of
dimension N > 1 on Ω.

Proof. The proof shows that for any N -dimensional space V ⊂ C(Ω) there exists a
set of pairwise distinct points XN ⊂ Ω such that the interpolation matrix is sin-
gular, contradicting Property (iii) of Proposition (1.5). To show this, assume V :=
span {φ1, . . . , φN} ⊂ C(Ω) is an Haar space of dimension N on Ω and consider a set

of pairwise distinct points XN ⊂ Ω such that x1, x2 ⊂ B(x0, ε). Since V is an Haar
space, by property (iii) of Proposition 1.5 we have det(Aφ,XN ) 6= 0.

Noe define continuous and simple curves (i.e., no self intersections) γ1, γ2 : [0, 1]→
B(x0, ε) with γ1(0) = x1, γ1(1) = x2, γ2(0) = x2, γ2(1) = x1, and such that γ1(t) 6=
γ2(t), γi(t) 6= x3, . . . , xN , t ∈ [0, 1]. Then XN(t) := {γ1(t), γ2(t), x3, . . . , xN} are distinct
for all t ∈ [0, 1].

Define as D(t) := det(Aφ,XN (t)) the determinant of the corresponding matrix. We
have D(0), D(1) 6= 0 by Property (ii), but D(0)D(1) < 0 (first two rows are permuted),
and D(t) is continuous in t, then there exists t̄ ∈ [0, 1] with D(t̄) = 0. So XN(t̄) is a set
of pairwise distinct points with D(t̄) = 0, thus V is not an Haar space.

Figure 1.1: Illustration of the proof of the Mairhuber-Curtis Theorem

This means that the space V can not be chosen a-priori, i.e., it needs to be de-
pendent on the particular points XN . Here is where kernels come into play: we can
consider a continuous and strictly positive definite kernel K : Ω×Ω→ R and use the
second variable of the kernel to generate a data-dependent basis and set as

V := V (XN) := span {φj(x) := K(x, xj), 1 ≤ j ≤ N} .
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The interpolant is now of the form

s(x) :=
N∑
j=1

αjφj(x) =
N∑
j=1

αjK(x, xj),

and the interpolation matrix is

AK,XN :=


φ1(x1) φ2(x1) . . . φN(x1)
φ1(x2) φ2(x2) . . . φN(x2)

...
...

...
...

φ1(xN) φ2(xN) . . . φN(xN)

 =


K(x1, x1) . . . K(x1, xN)
K(x2, x2) . . . K(x2, xN)

...
...

...
K(xN , x1) . . . K(xN , xN)

 .
Thank to the definition 1.2 of strictly positive definite kernel, this matrix is positive
definite. This means (we will see this in more details) that it is also always invertible.

Theorem 1.7 (Kernel interpolation is well defined). Let Ω ⊂ Rd and K a SPD kernel
on Ω. Given any set XN := {xi}Ni=1 ⊂ Ω of pairwise distinct points and target values
{fi}Ni=1 ⊂ R, there exists a unique kernel interpolant

s(x) :=
N∑
j=1

αjK(x, xj),

with s(xi) = fi for 1 ≤ i ≤ N .

1.2.2 Mapping linear algorithms in high dimensional spaces

Problem 1.8. Let Ω be a set. Consider a set of dataXN := {xi}Ni=1 ⊂ Ω withXN := X+∪X−,
representing elements of two classes (positive and negative). Find a function

f(x) =

{
1, x ∈ X+

−1, x ∈ X−

which classifies the points in the two classes.

If Ω ⊂ Rd and the points are linearly separable, there exists a function f(x) :=
(w, x) + b with w ∈ Rd, b ∈ R such that

f(x) := (w, x) + b

{
> 0, x ∈ X+

< 0, x ∈ X−
. (1.3)

This function is named a classifier, and it is not unique. We will study an algorithm
called linear Support Vector Machine (linear SVM) that computes w, b efficiently and
such that the “separation margin” between the two classes is maximized.



CHAPTER 1. INTRODUCTION AND MOTIVATION 6

Observe that, if XN is large enough and the points are not all linear dependent,
we can assume that w :=

∑N
j=1 αjxj . Thus

f(x) := (w, x) + b =
N∑
j=1

αj(xi, xj) + b, (1.4)

i.e., the classifier can be expressed in terms of inner products between the data. This
is the case of any other linear algorithm, if w can be expressed in this way.

What can we do in the case the two classes are not linearly separable? A possible
solution is to map the data into an higher dimensional space, i.e., consider a feature
map φ : Ω→ H into an Hilbert space H called the feature space, and apply the same
classification algorithm in this new space.

Figure 1.2: Example of a feature map from Ω := R2 to the feature space H := R3.

The hope is that the data are linearly separable in the high dimensional space. This
means that we now consider w ∈ H , b ∈ R and the classifier (1.3) is now of the form

f(x) := (w, φ(x))H + b.

If we use the same assumption on w, we have w :=
∑N

j=1 αjφ(xj), then (1.4) becomes

f(x) := (w, x)H + b =
N∑
j=1

αj(φ(xi), φ(xj))H + b. (1.5)
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The same algorithm (in this case linear SVM) can be applied here, but considering
inner products (φ(xi), φ(xj))H of the transformed data. The nice thing is that the func-
tion K(x, y) := (φ(x), φ(y))H is indeed a kernel!

Theorem 1.9 (Kernels induced by feature maps). Let Ω be a set, H an Hilbert space and
φ : Ω → H a feature map. Then the function K(x, y) := (φ(x), φ(y))H is a positive definite
kernel.

Proof. It suffices to verify the condition of definition 1.2: let N ∈ N, XN ∈ Ω pairwise
distinct and α ∈ RN , then

N∑
i,j=1

αiαjK(xi, xj) =
N∑

i,j=1

αiαj(φ(xi), φ(xj))H =

(
N∑
i

αiφ(xi),
N∑
j=1

αjφ(xj)

)
H

=

∥∥∥∥∥
N∑
i=1

αiφ(xi)

∥∥∥∥∥
2

H

≥ 0,

since the norm is positive definite.
Observe that strict positive definiteness can not be concluded because {φ(xi)}Nj=1

can be in general linearly dependent.

This means that the mapping of algorithms expressed in terms of inner products
to higher dimensional spaces leads naturally to the use of positive definite kernels.

Some consequences and comments on the Theorem:

• If we directly consider K(x, y) = (φ(x), φ(x))H , we see that there is no need to
assume that Ω ⊂ Rd, but instead we can define a feature map, then also a kernel,
on general sets Ω

• If K(x, y) is known explicitly, the inner products in the high dimensional space
can be computed implicitly by just evaluating K, which is in general a much
cheaper operation (called the kernel trick).

• At this stage there is no need to assume that the space H is an Hilbert space,
since the proof would work for any inner product space. But we will see in the
following that, if a feature map exists, then there exists also another one with
values in an Hilbert space. So this assumption is not restrictive.

1.3 Questions to be addressed

This preliminary discussion motivates some questions that will be addressed during
this course:

• How can kernels be constructed and characterized?

• What are common properties of all kernels?



CHAPTER 1. INTRODUCTION AND MOTIVATION 8

• What is the relation between general kernels and kernels obtained from feature
maps?

• The kernel interpolation, so far, is just a “join the dots” operation: what kind
of functions can be really approximated? How well can functions be approxi-
mated? (and the same for classification)

• How can this approach be adapted to solve PDEs?

• What kind of algorithms can be used to efficiently solve kernel approximation
problems?

• How to choose in practice a suitable kernel, its parameters, the data/points?

• How to measure the performances of an algorithm? (test/train, cross-validation,
...)



2. Basic properties and examples of
kernels

We recall the positivity classes seen in the previous chapter.

Definition 2.1 (Positivity classes). Let Ω be a nonempty set. For all N ∈ N and for a set
of N pairwise distinct elements XN := {xi}Ni=1 ⊂ Ω define the kernel matrix (or Gramian
matrix) A := AK,XN ∈ RN×N as A := [K(xi, xj)]

N
i,j=1.

A kernel K on Ω is positive definite (PD) on Ω if for all N ∈ N, for any set of N pairwise
distinct elements XN := {xi}Ni=1 ⊂ Ω the kernel matrix is positive semidefinite, i.e., for all
vectors α := {αi}Ni=1 ∈ RN it holds

N∑
i,j=1

αiαjK(xi, xj) ≥ 0.

The kernel is strictly positive definite (SPD) if the kernel matrix is positive definite, i.e.,
the inequality holds with “>” when α 6= 0.

2.1 Criteria for (S)PD

We see now some basic criteria to check if a kernel is (S)PD. They are properties of the
associated kernel matrix, while we will later see more sophisticated criteria to directly
conclude (strict) positive definiteness from the kernel itself.

We start by recalling the following fact from linear algebra.

Theorem 2.2 (LDU decomposition). Let A ∈ RN×N . Assume that the leading principal
submatrices ofA are non singular, i.e., det(An) 6= 0 for all 1 ≤ n ≤ N , whereAn := [Aij]

n
ij=1.

Then there exists a unique LDU decomposition

A = LDU

with L lower triangular, U upper triangular, D diagonal, diag(L) = diag(U) = [1, . . . , 1]T

and Dii 6= 0, 1 ≤ i ≤ N .
If A is also symmetric, then U = LT , i.e. A = LDLT .

Proof. See Linear Algebra courses or [2, Section 4.1]. The idea is roughly to apply
Gauss elimination in a proper way.

Proposition 2.3 (Criteria for positive definiteness). Let A ∈ RN×N be a symmetric ma-
trix. The following are equivalent:

i) A is PD, i.e., αTAα > 0 for all α ∈ RN ;

9
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ii) A has a unique Cholesky decomposition, i.e., A = LLT with L lower triangular with
Lii > 0;

iii) The eigenvalues {λi}Ni=1 of A are positive;

iv) The leading principal minors of A are positive, i.e., det(An) > 0 for all 1 ≤ n ≤ N ,
where An := [Aij]

n
ij=1. In particular A is invertible with det(A) > 0.

Proof. First, consider the eigen-decomposition A = V ΛV T , with V,Λ ∈ RN×N , V TV =
V V T = I , Λ = diag(λ1, . . . , λN), and denote as Vi the columns of V (this decomposi-
tion exists because A is symmetric).

(iii)⇒(i) Since the columns of V are an o.n.b. of RN , 0 6= α =
∑N

i=1 Viβi with β ∈
RN \ {0}, i.e., α = V β. Then

αAα =
(
βTV T

)
A (V β) = βTV T

(
V ΛV T

)
V β = βT

(
V TV

)
Λ
(
V TV

)
β

= βTΛβ =
N∑
i=1

β2
i λi,

thus αAα > 0 if λi > 0.

(i)⇒(iii) αTAα > 0 for all α 6= 0, and in particular for α = Vi we obtain 0 < V T
i AVi =

λiV
T
i Vi = λi.

(i)⇒(iv) αTAα > 0 for all α 6= 0, and in particular for α := [αTn , 0
T ]T with αn ∈ Rn

we have 0 < αTAα = αTnAnαn so An is PD. Then the determinant det(An) =∏n
i=1 λi(An) > 0 by (iii).

We then have

(ii)⇒(i) L is invertible since det(L) = L11 . . . LNN > 0, so LTα 6= 0 if α 6= 0. It follows
that

αTAα = (αTL)(LTα) = ‖LTα‖2 > 0.

(iv)⇒(ii) By Theorem 2.2, each An has a unique LDU decomposition, so in particular
(n = N ) A = LDLT is unique. We prove that D has positive diagonal, from
which it follows that A = (L

√
D)(
√
DLT ) is a Cholesky decomposition of A,

since L
√
D is a lower triangular matrix with positive diagonal.

To see this, we first prove that the principal n×n submatrix of L and D give the
unique LDU decomposition of An, for all 1 ≤ n ≤ N − 1.

Indeed, for all n (“∗” denotes a generic vector or scalar)[
An−1 ∗
∗ ∗

]
= An = LnDnUn =

[
Ln−1 0
∗ ∗

] [
Dn−1 0

0T ∗

] [
LTn−1 ∗
0T ∗

]
=

[
Ln−1Dn−1 0
∗ ∗

] [
LTn−1 ∗
0T ∗

]
=

[
Ln−1Dn−1L

T
n−1 ∗

∗ ∗

]
,
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so An−1 = Ln−1Dn−1L
T
n−1 is a LDU decomposition of An−1 (and so it is the

unique one).

It follows that det(An) = det(Dn) = D11D22 . . . Dnn, and since det(An) > 0 by
hypothesis, we have

0 < det(A1) = D11 ⇒ D11 > 0
0 < det(A2) = D11D22 ⇒ D22 > 0
...

...
...

...
0 < det(A) = D11 . . . DNN ⇒ DNN > 0.

Finally, to prove that this Cholesky decomposition is unique, assume there ex-
ists another one with matrix L′. Since L′ has positive diagonal, we can rewrite
A = L′L′T as

An =


1 0 . . . 0
L′21

L′11
1 . . . 0

...
...

...
...

L′N1

L′11

L′N2

L′22
. . . 1



L′211 0 . . . 0
0 L′222 . . . 0
...

...
...

...
0 0 . . . L′2NN




1
L′12

L′11
. . .

L′1N
L′11

0 1 . . .
L′2N
L′22

...
...

...
...

0 0 . . . 1

 ,
so we obtain another LDU decomposition, which is unique, so L′ = L.

Remark 2.4. This Proposition almost applies also for positive semidefinite matrices by replac-
ing > with ≥, and in this case (i)⇔(iii)⇒(iv). But the matrix

A :=

[
0 0
0 −1

]
satisfies eT2Ae2 < 0 even if the leading principal minors are non-negative.

In the case of PD kernels, hence of positive semidefinite matrices, (iv) can instead be re-
placed by the following:

iv) The principal minors of A are non negative, i.e., det(Ã) ≥ 0 for all principal submatrix
Ã of A, where a principal submatrix is a matrix obtained by removing the same rows
and columns.

Indeed, using this new characterization the matrix A of the above example can be proven to be
not positive semidefinite since the bottom-right submatrix has negative determinant.

Moreover, a decomposition A = LLT still exists, but it is not unique and it possible that
Lii = 0 for some i.

Recall that we have already seen another characterization of PD kernels in Theo-
rem 1.9, which does not require any computation with the kernel matrix.: If there ex-
ists an Hilbert spaceH and a feature map φ : Ω→ H such thatK(x, y) = (φ(x), φ(y))H ,
then K is a PD kernel.
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2.2 Properties of (S)PD kernels

The following are useful properties of any PD kernel.

Proposition 2.5. Let K : Ω× Ω→ R be a PD kernel, then

i) K(x, x) ≥ 0 for all x ∈ Ω (non-negativity of the diagonal)

ii) K(x, y)2 ≤ K(x, x)K(y, y) (Cauchy-Schwarz inequality).

If K is SPD then “>” holds.

Proof. (i) Let N := 1, X1 := {x}, α := 1. Positive definiteness implies αAα =
α2K(x, x) ≥ 0, so K(x, x) ≥ 0 for all x.

(ii) Use N := 2, X2 := {x, y}, i.e.,

A =

[
K(x, x) K(x, , y)
K(y, x) K(y, y)

]
,

so det(A) = K(x, x)K(y, y)−K(x, y)2 ≥ 0 (by Property (iv)).
In both cases, the same argument proves “>” if K is SPD.

We will also need the fact that kernel matrices of not pairwise distinct points are
still positive semidefinite.

Proposition 2.6. Let K be PD or SPD and XN be a set of points, not necessarily pairwise
distinct. Then the kernel matrix A := [K(xi, xj)]

N
i,j=1 is positive semidefinite.

Proof. If the points are pairwise distinct the statement follows from the definition of
PD and SPD kernels.

If instead there are duplicated points, we use point iv) of Remark 2.4 and prove
that every principal minor of A has non negative determinant. Indeed, every prin-
cipal minor is defined by removing from A rows and columns with indexes I ⊂
{1, . . . , N}. If I is such that XN(I) := {xi ∈ XN : i /∈ I} are pairwise distinct, then
since the submatrix is the kernel matrix ofXN(I), it is positive semidefinite. If instead
XN(I) are not pairwise distinct, then the submatrix contains two equal columns, so
its determinant is zero.

2.3 Basic operations on kernels

It is often useful to obtain a new kernel by performing basic operations on other
kernels. Moreover, these operations can be used to prove that a kernel is PD, if it
is possible to prove that it is generated from operations on other kernels which are
known to be PD. We collect in the following Proposition some of them.
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Proposition 2.7 (Basic operations on kernels). Let Ω be a set, K1, K2 : Ω×Ω→ R be PD
kernels, f : Ω → Ω, g : Ω → R, Ω′ ⊂ Ω, and x, y generic elements in Ω. Then the following
are PD kernels:

i) K : Ω′ × Ω′ → R with K := (K1)|Ω′×Ω′
(PD on Ω′)

ii) K(x, y) := K1(x, y) +K2(x, y)

iii) K(x, y) := aK1(x, y) if a ≥ 0

iv) K(x, y) := K1(x, y)K2(x, y)

v) K(x, y) := exp(K1(x, y))

vi) K(x, y) := K1(f(x), f(y))

vii) K(x, y) := g(x)g(y)

viii) K(x, y) := g(x)K1(x, y)g(y)

ix) K(x, y) := h(K1(x, y)) with h(z) :=
∑∞

i=0 aiz
i, ai ≥ 0, with radius of convergence

ρ > 0 and |K1(x, y)| ≤ ρ.

Proof. The points (ii) – (v) are exercises.

(i) It follows just by applying Definition 1.2.

(vi) For a set XN ⊂ Ω, define X ′N := {x′i := f(xi), xi ∈ XN}. Then

A := [K1(f(xi), f(xj))]
N
ij=1 = [K1(x′i, x

′
j)]

N
ij=1

is positive semidefinite (even in the caseXN are not pairwise distinct, see Propo-
sition 2.6).

(vii) Here

A =


g(x1)g(x1) . . . g(x1)g(xN)
g(x2)g(x1) . . . g(x2)g(x2)

...
...

...
g(xN)g(x1) . . . g(xN)g(xN)

 =

 g(x1)
...

g(xN)

 [g(x1), . . . , g(xN)] =: ḡḡT ,

thus αTAα = αT (̄ḡḡT )α = (αT ḡ)(ḡTα) = (ḡTα)2 ≥ 0.

(viii) It follows by combining (iv) and (vii).

(ix) The kernel obtained from the finite sumKm(x, y) :=
∑m

i=0 aiK1(x, y)i is PD thanks
to (ii), (iii), (iv). Define as Am the corresponding kernel matrix. Then αTAα =
limm→∞ α

TAmα ≥ 0, since the argument of the limit is positive and the series
converges for |K1(x, y)| ≤ ρ.
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Remark 2.8. To obtain strictly PD kernels one needs to assume the following:

i) K1 is SPD

ii) K1 or K2 is SPD

iii) K1 is SPD and a > 0

iv) K1 and K2 are SPD

vi) K1 is SPD and f is injective

viii) K1 is SPD and g(x) 6= 0 for all x

One other particular way to generate kernels is to combine kernels defined on
lower dimensional spaces. This is useful for example when the data are tuples where
each component represents a different object.

Proposition 2.9 (Kernels for product spaces). Let d ≥ 1. Consider the set Ω := Ω1×Ω2×
· · · × Ωd for arbitrary sets Ωl and denote x ∈ Ω as x := (x(l))dl=1 with x(l) ∈ Ωl.

Let Kl : Ωl × Ωl → R be a (S)PD kernel on Ωl.
Then the following are (S)PD kernels on Ω:

i) K(x, y) :=
∑d

l=1Kl

(
x(l), y(l)

)
.

ii) K(x, y) :=
∏d

l=1 Kl

(
x(l), y(l)

)
Proof. Denote as Al the kernel matrix of Kl.

(i) For all i, j we have K(xi, yj) :=
∑d

l=1 Kl

(
x

(l)
i , y

(l)
j

)
, so we can apply Property (ii) of

Proposition (2.7). Observe that the kernel matrix satisfiesA = A1+A2+· · ·+AN .

(ii) With the same idea we obtain A = A1 ◦ A2 ◦ · · · ◦ AN (Hadamard or pointwise
product). The result that the Hadamard product of positive definite matrices is
positive definite is known as Schur’s Product Theorem.

2.4 Examples of kernels

With the tools of the previous sections, we can now consider some relevant examples
of kernels and prove that they are positive definite. We first consider some examples
for Ω ⊂ Rd.

Proposition 2.10. We have the following for Ω ⊂ Rd:



CHAPTER 2. BASIC PROPERTIES AND EXAMPLES OF KERNELS 15

i) K(x, y) := (x, y) (linear kernel) is PD

ii) K(x, y) := ((x, y) + a)p, a ≥ 0, p ∈ N (polynomial kernel) is PD

iii) K(x, y) := exp(−ε2‖x− y‖2), ε > 0 (Gaussian kernel) is SPD.

Proof. (i) There exist a feature map, so we can use Theorem 1.9: WithH := Rd, φ(x) :=
x we have K(x, y) = (φ(x), φ(y))H .

(ii) The kernelK(x, y) := a is PD since αAα = a
(∑d

i=1 αi

)2

≥ 0. Thus the polynomial
kernel can be obtained as sums and products of PD kernels (since the linear
kernel is PD) and from Proposition 2.7 we conclude that it is PD.

(iii) We prove the statement for d = 1. For d > 1 we have

exp(−ε2‖x− y‖2) = exp

(
−

d∑
i=1

ε2(x(i) − y(i))2

)
=

d∏
i=1

exp
(
−ε2(x(i) − y(i))2

)
,

so from the case d = 1 it follows that the Gaussian is a product of SPD kernels,
hence SPD by Property (iv) of Proposition 2.7 and the corresponding Remark.

For d = 1, recall (see Analysis I/II/III) that the Fourier transform is defined as

F (f)(ω) :=

∫
R
e−ixωf(x)dx, ω ∈ R.

We first prove that the Gaussian kernel is the Fourier transform of a positive

function. Indeed, if fσ(x) := e−
x2

2σ2 it can be proven thatF (fσ)(ω) =
√

2π σe−
1
2
ω2σ2 .

Taking σ :=
√

2ε, we obtain F (fσ)(ω) = 2
√
πεe−ε

2ω2 , so for any ωi, ωi ∈ R

K(ωj, ωl) := e−ε
2(ωj−ωl)2

=
1

2
√
πε
F (fσ)(ωj − ωl).

Now we prove PD: For XN := {ω1, . . . , ωN} ⊂ Rd and 0 6= α ∈ RN we have

αTAα =
N∑

j,l=1

αjαlK(ωj, ωl) =
1

2
√
πε

N∑
j,l=1

αjαlF (fσ)(ωj − ωl)

=
1

2
√
πε

N∑
j,l=1

αjαl

∫
R
e−ix(ωj−ωl)fσ(x)dx

=
1

2
√
πε

∫
R

N∑
j,l=1

αjαle
−ix(ωj−ωl)fσ(x)dx

and using the fact that e−ix(ωj−ωl) = (e−ixωj) (e−ixωl)) we obtain

αTAα =
1

2
√
πε

∫
R

∣∣∣∣∣
N∑
j=1

αje
−ixωj

∣∣∣∣∣
2

fσ(x)dx ≥ 0,
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since both the functions in the integral are non negative.

To prove SPD, observe that for {wj}Nj=1 pairwise distinct, the functions {e−ixωj}Nj=1

are linearly independent, so the argument of the integral is strictly positive and
then the kernel is SPD.

Remark 2.11 (Gaussian kernel). The Gaussian kernel is an example of a Radial Basis Func-
tion (RBF) kernel. Indeed, it can be written as

K(x, y) := Φ(ε‖x− y‖)

with Φ : [0,∞) → R and ε > 0 a shape parameter. We will study in details this kind of
kernels, and we will see that the proof of SPD for general RBFs is very similar to the one for
the Gaussian (so most of the work is done already).

These kernels are well studied (almost all the error analysis that we will see applies mainly
to RBF kernels). Moreover, they are the most used kernels in practical applications, since
they are really easy to compute. Indeed, one can compute a distance matrix D ∈ RN×N with
Dij := ‖xi − xj‖, and obtain the kernel matrix just as A = Φ(εD) (see demo in ILIAS).

Remark 2.12 (Polynomial kernel). The PD of the Polynomial kernel can be proven also by
finding a suitable feature map. For example for d = 2, p = 2 the kernel is

K(x, y) = ((x, y) + a)2 = (x(1)y(1) + x(2)y(2) + a)2

= (x(1))2(y(1))2 + (x(2))2(y(2))2 + a2 + 2x(1)y(1)x(2)y(2) + 2ax(1)y(1) + 2ax(2)y(2),

and a feature map φ : R2 → R6 is

φ(x) =
[
a,
√

2a x(1),
√

2a x(2), (x(1))2, (x(2))2,
√

2 x(1)x(2)
]T
,

where 6 is the dimension of the space P2(R2) of polynomial of degree p = 2 in d = 2 variables.
In general the kernel is

K(x, y) := ((x, y) + a)p =

(
d∑
i=1

x(i)y(i) + a

)p

which is a d-variate polynomial of degree p. In general it contains not all the monomial terms
but only the ones with multi index j := (j1, . . . , jd) ∈ J , for a certain set J ⊂ Nd

0. If a > 0 it
contains all the monomials, so m := |J | =

(
d+p
d

)
= dim(Pp(Rd)).

The kernel can be written as

K(x, y) =
∑
j∈J

ajx
jyj,

for some positive numbers {aj}j∈J , and a feature map φ : Rd → Rm is

φ(x) := [
√
a1x

j1 , . . . ,
√
amx

jm ]T .
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Observe that using the kernel instead of the feature map is very convenient (kernel trick, see
remark after Theorem 1.9). Indeed, in this way we work with d dimensional instead of

(
d+p
d

)
dimensional vectors.

This feature map representation proves also that the polynomial kernel is not SPD in
general: e.g., if XN contains N pairwise distinct points and m > N , then {φ(xi)}Ni=1 can not
be linear dependent. So the kernel is only positive definite (see proof of Theorem 1.9).

We then consider some examples of kernels for structured data.

Example 2.13 (Bag-of-words kernel). Let Ω be the set of all finite strings over an alphabet
Σ := {σ1, σ2, . . . , σm}, i.e.,

Ω := {σ1, σ2, . . . , σm, σ1σ2, . . . , σ1σ2σ3, . . . }.

LetD = {wi}di=1 be a dictionary of d elements, and for a finite string x ∈ Ω define the function
fi : Ω→ N0 as

fi(x) := “number of occurrences of world wi in x”.

Then the bag-of-words kernel is defined as

K(x, y) :=
d∑
i=1

fi(x)fi(y)

and it is PD since it has the feature map φ : Ω→ Nd
0, φ(x) := [f1(x), . . . , fd(x)]T .

This kernel can be used for text processing, e.g., for spam filtering if D is a set of “danger-
ous” words and x ∈ Ω is the text of an email.

Observe that K(x, y) is the number of common words of the strings x, y, counted with
multiplicities, so it is a “similarity measure” between two strings.

Example 2.14 (Tree kernel). Let Ω be a finite set of trees.
Let S := {ti}di=1 be the set of all subtrees of trees in Ω. For a tree x ∈ Ω define the function

fi : Ω→ N0 as
fi(x) := “number of occurrences of subtree ti in x”.

Then the tree kernel is defined as

K(x, y) :=
d∑
i=1

fi(x)fi(y)

and it is PD since it has the feature map φ : Ω→ Nd
0, φ(x) := [f1(x), . . . , fd(x)]T .

This kernel can be used e.g. for natural language processing, where the trees are parse trees
representing the syntactic structure of a sentence, or to process html files.

Observe that K(x, y) is the number of common subtrees of the trees x, y, counted with
multiplicities, so it is a “similarity measure” between two trees.



3. Kernels and Hilbert spaces

We start now to study a class of Hilbert spaces which are strictly connected with PD
kernels.

First recall Theorem 1.7.

Theorem 3.1 (Kernel interpolation is well defined). Let Ω ⊂ Rd and K a SPD kernel
on Ω. Given any set XN := {xi}Ni=1 ⊂ Ω of pairwise distinct points and target values
{fi}Ni=1 ⊂ R, there exists a unique kernel interpolant

s(x) :=
N∑
j=1

αjK(x, xj),

with s(xi) = fi for 1 ≤ i ≤ N .

The idea is to analyze the set of functions for which kernel interpolation “works”.
This means that, in the case the data values {fi}Ni=1 come from the sampling of an
unknown function f : Ω → R, i.e., fi = f(xi) for xi ∈ XN , we want to know when
s is a good approximation of f , provided that we have sufficiently many data XN .
This will lead us to the study of error analysis and convergence results for this type
of approximation.

It will turn out that this set of functions is indeed an Hilbert space, with an inner
product defined by the kernel.

In this space it will also be possible to analyze in more details the process of ap-
proximation, in the sense that a precise functional characterizations can be connected
to the computation of s.

We start by defining a particular class of Hilbert spaces and discussing some of its
properties.

3.1 Reproducing kernel Hilbert spaces

Definition 3.2 (RKHS). Let Ω be a nonempty set,H an Hilbert space of functions f : Ω→ R
with inner product (·, ·)H. ThenH is called a Reproducing Kernel Hilbert Space on Ω (RKHS)
if there exists a function K : Ω× Ω→ R (the reproducing kernel) such that

i.) K(·, x) ∈ H for all x ∈ Ω,

ii.) (f,K(·, x))H = f(x) for all x ∈ Ω, for all f ∈ H (reproducing property).

This definition could seem a bit artificial, but RKHS are quite common spaces, as
shown by the following examples.

18
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Example 3.3 (Finite dimensional Hilbert spaces). Let Ω be a nonempty set and H be
an Hilbert space of functions f : Ω → R, with dim(H) = N < ∞. Let {vj}Nj=1 be an
orthonormal basis ofH. ThenH is a RKHS on Ω with kernel

K(x, y) :=
N∑
j=1

vj(x)vj(y), x, y ∈ Ω.

Indeed, for all x ∈ Ω the function K(x, ·) =
∑N

j=1 vj(x)vj(·) is clearly an element of H
because it is a linear combination (with x-dependent coefficients) of basis elements, and for all
f(·) :=

∑N
i=1 civi(·) ∈ H, it holds

(f,K(·, x))H =

(
N∑
i=1

civi,

N∑
j=1

vj(x)vj

)
H

=
N∑

i,j=1

civj(x) (vi, vj)H

=
N∑

i,j=1

civj(x)δij =
N∑
i=1

civi(x) = f(x).

Example 3.4 (The Sobolev space H1
0 ((0, 1))). Consider the Sobolev space 1

H1
0 ((0, 1)) := {f : [0, 1]→ R, f ∈ L2((0, 1)), f ′ ∈ L2((0, 1)), f(0) = f(1) = 0}

where f ′ is the weak derivative of f , equipped with the inner product

(f, g)H1
0 ((0,1)) :=

∫ 1

0

f ′(y)g′(y)dy.

Then H1
0 ((0, 1)) is a RKHS on (0, 1) with reproducing kernel the Brownian bridge kernel

K(x, y) := min(x, y)− xy =

{
y(1− x), y ≤ x
x(1− y), y > x

.

Indeed, it holds K(·, y) ∈ L2((0, 1)),

∂yK(x, y) =

{
(1− x), y ≤ x
−x, y > x

∈ L2((0, 1))

and K(0, y) = K(1, y) = 0, so K(·, y) ∈ H1
0 ((0, 1)) for all y ∈ Ω. Moreover for all f ∈

H1
0 ((0, 1))

(f,K(·, x))H1
0 ((0,1)) =

∫ 1

0

f ′(y)∂yK(x, y)dy =

∫ x

0

f ′(y)(1− x)dy +

∫ 1

x

f ′(y)(−x)dy

=

∫ x

0

f ′(y)dy − x
∫ 1

0

f ′(y)dy = f(x)− f(0)− x (f(1)− f(0))

= f(x).
1For a function f ∈ L2, it makes no sense to prescribe a pointwise value as we do in the definition.

But it can be proven that, when H1
0 ((0, 1)) is properly defined, it holds H1

0 ((0, 1)) ⊂ C((0, 1)), so the
assertion f(0) = f(1) = 0 makes sense.
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Figure 3.1: Brownian bridge kernel for one given x ∈ (0, 1).

3.1.1 Properties

We see some basic properties of RKHS, which will be useful later.

Proposition 3.5. LetH be a RKHS on Ω with reproducing kernelK. LetN,M ∈ N, α ∈ RN ,
β ∈ RM , XN , YM ⊂ Ω, and define the functions

f(x) :=
N∑
i=1

αiK(x, xi), g(x) :=
M∑
j=1

βjK(x, yj), x ∈ Ω.

Then we have the following:

i) f, g ∈ H,

ii) (f, g)H =
∑N

i=1

∑M
j=1 αiβjK(xi, yj).

Proof. The two properties follow from the definition of RKHS:

(i) By Property i of Definition 3.2 we have K(·, xi) ∈ H for all xi ∈ XN . Since H is
an Hilbert space, it is in particular a linear space and thus it contains all finite
linear combinations of its elements, so f, g ∈ H.

(ii) The inner product of f, g is well defined since f, g ∈ H. We use Property ii of
Definition 3.2 and linearity of the inner product to obtain

(f, g)H =

(
N∑
i=1

αiK(·, xi),
M∑
j=1

βjK(·, yj)

)
H

=
N∑
i=1

M∑
j=1

αiβj (K(·, xi), K(·, yj))H

=
N∑
i=1

M∑
j=1

αiβjK(xi, yj).
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The following is the first connection between RKHS and PD kernels.

Theorem 3.6 (Reproducing kernels are PD kernels). LetH be a RKHS with reproducing
kernel K. Then K is unique and it is a positive definite kernel.

Proof. Taking f(·) := K(·, y), g(·) := K(·, y), we get from (ii) of Proposition 3.5 that
K(x, y) = (f, g)H = (g, f)H = K(y, x), so K is a kernel according to Definition 1.1.

To prove PD of K we check Definition 1.2. For XN ⊂ Ω pairwise distinct and
α ∈ RN , α 6= 0 we use Property (ii) of Proposition 3.5 to obtain

αTAα =
N∑

i,j=1

αiαjK(xi, xj) =

(
N∑
i=1

αiK(·, xi),
N∑
j=1

αjK(·, xj)

)
H

=

∥∥∥∥∥
N∑
i=1

αiK(·, xi)

∥∥∥∥∥
2

H

≥ 0.

Observe that we can not conclude > 0 since {K(·, xi)}Ni=1 can be linearly dependent
in general, so K is not SPD in general.

Assume nowK1, K2 are two reproducing kernels ofH. From i of Definition 3.2 we
have K1(·, x), K2(·, y) ∈ H for all x, y ∈ Ω. Since K1, K2 are both reproducing kernels
ofH, they both satisfy the reproducing property, so for all x, y ∈ Ω we obtain

K1(x, y) = (K1(·, y), K2(·, x))H = K2(x, y).

3.1.2 Characterization

We recall the following theorem.

Theorem 3.7 (Riesz representation theorem for Hilbert spaces). Let H be an Hilbert
space and denote as H′ its dual, i.e., the set of linear and continuous functionals λ : H → R
with norm

‖λ‖H′ = sup
f∈H,f 6=0

|λ(f)|
‖f‖H

.

Then for all λ ∈ H′ there exists a unique vλ ∈ H (the Riesz representer of λ) such that

λ(f) = (vλ, f)H for all f ∈ H.

Moreover, ‖λ‖H′ = ‖vλ‖H.

It is now possible to completely characterize Hilbert spaces which are RKHS.

Proposition 3.8 (Properties of RKHS). Let Ω be a nonempty set andH an Hilbert space of
functions f : Ω→ R, then
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i) H is a RKHS if and only if the point evaluation functionals are continuous (i.e., for all
x ∈ Ω the functional δx : H → R, δx(f) := f(x) satisfy δx ∈ H′).

IfH is a RKHS with kernel K, then

ii) K(·, x) is the Riesz-representer of the functional δx ∈ H′

iii) K is strictly PD if and only if {δx, x ∈ Ω} are linearly independent

iv) |f(x)| ≤
√
K(x, x) ‖f‖H for all f ∈ H, x ∈ Ω. In particular ‖f‖H = 0 implies

f(x) = 0 for all x ∈ Ω

v) Convergence in H implies pointwise convergence (i.e., if f ∈ H, {fn}n∈N ⊂ H and
limn→∞ ‖f − fn‖H = 0, then limn→∞ |f(x)− fn(x)| = 0 for all x ∈ Ω).

Proof. (i) AssumeH is a RKHS with kernel K. Then using (iv)

|δx(f)| = |f(x)| ≤
√
K(x, x) ‖f‖H,

so δx is bounded since ‖δx‖H′ ≤ Cx :=
√
K(x, x), and thus it is continuous..

Assume instead that δx ∈ H′ for all x ∈ Ω. Then by Theorem 3.7 there exists a
Riesz representer vδx ∈ H. If we define K(·, x) := vδx(·) ∈ H, then K satisfies the
two properties of Definition 3.2 since clearly vδx ∈ H and (f, vδx)H = f(x) for
all x ∈ Ω and f ∈ H by definition of Riesz representer. So H has a reproducing
kernel, thus it is a RKHS.

(ii) The reproducing property implies that (f,K(·, x))H = f(x) for all x ∈ Ω, f ∈ H.
Since K(·, x) ∈ H, it is the unique Riesz representer of δx.

(iii) We first show that a finite set of linear functionals is linearly independent if and
only if their Riesz representers are linearly independent.

Let λ1, . . . , λN ∈ H′ and vλ1 , . . . , vλN ∈ H′ be their Riesz representers. The
functionals are linearly dependent if and only if there exists α ∈ RN such that
λ :=

∑N
i=1 αiλi = 0 inH′, i.e. λ(f) = 0 for all f ∈ H. This is true if and only if

0 = λ(f) =
N∑
i=1

αiλi(f) =
N∑
i=1

αi (vλi , f)H =

(
N∑
i=1

αivλi , f

)
H

,

i.e., if and only if
∑N

i=1 αivλi = 0 in H, i.e., if and only if the Riesz representers
are linearly dependent.

Now {δx, x ∈ Ω} are linearly independent if and only if their Riesz representers
are linearly independent, i.e., (Property (ii)) if and only if {K(·, x), x ∈ Ω} are
linearly independent.
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In this case in the proof of Theorem 3.6 one can conclude αTAα > 0, since∥∥∥∥∥
N∑
i=1

αiK(·, xi)

∥∥∥∥∥
2

H

> 0,

so K is SPD.

(iv) By the Cauchy-Schwarz inequality and the reproducing property we have for all
x ∈ Ω and f ∈ H that

|f(x)| = |(f,K(·, x))H| ≤ ‖f‖H‖K(·, x)‖H

where
‖K(·, x)‖H = (K(·, x), K(·, x))

1/2
H =

√
K(x, x).

(v) Since (f − fn) ∈ H for all n, using (iv) we obtain for all x ∈ Ω that

|f(x)− fn(x)| ≤
√
K(x, x) ‖f − fn‖H → 0 as n→∞,

and since limn→∞ ‖f − fn‖H = 0 we have limn→∞ |f(x)− fn(x)| = 0.

Example 3.9 (L2 is not a RKHS). Using Property (ii) of Theorem 3.8 we can prove that
L2(R) is not a RKHS (it holds the same for any L2 space).

Indeed, for ε > 0 consider the function fε(x) := (1− |εx|)+. It holds δ0(fε) = fε(0) = 1
for all ε, but

‖fε‖2
L2(R) =

∫
R
f 2
ε (x)dx =

2

3ε
,

so in particular fε ∈ L2(R).
It follows that δ0 is not bounded (thus not continuous), since

‖δ0‖L2(R)′ = sup
f∈L2(R),f 6=0

|f(0)|
‖f‖L2(R)

≥ |fε(0)|
‖fε‖L2(R)

=

√
3ε

2
,

and limε→∞
√

3ε/2 =∞.

3.2 The native space of a PD kernel

When solving approximation problems, we work in the opposite direction, i.e., we
have a kernel and we would like to know what space of functions can be approxi-
mated.

We see in the following Theorem that we can indeed start from a given PD kernel
K and identify and construct a space that is associated to it.

Moreover, it would be possible to deduce properties of the functions in this space
by looking at properties of the kernel. This is a useful indication in practical applica-
tions to choose a proper kernel for a given approximation task.
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Figure 3.2: The function fε.

Theorem 3.10 (RKHS from kernels – Moore - Aronszajn). Let Ω be a nonempty set and
K : Ω × Ω → R a positive definite kernel. Then there exists a unique RKHS HK(Ω) with
reproducing kernel K.

Some remarks before the proof:

• In the approximation literature, the RKHS space of a kernel is usually called the
native space of the kernel. We will use this notion from now on.

• We also change the notation to stress the dependence on the kernel: the native
space of K on Ω will be denoted as HK or even HK(Ω) . Notice that in some
texts it is denoted as NK(Ω).

Proof. The construction is guided by Proposition 3.5, where we proved that any RKHS
needs to contain functions of a certain form, and the inner product is defined in a
certain way for those functions. We start from this observation and construct the full
spaceHK(Ω).

First, following Property (i) of Proposition 3.5 we consider the set H0 of finite
linear combinations of kernels centered in points of Ω, i.e.,

H0 := span {K(·, x), x ∈ Ω} .

It is a set of functions Ω→ R, and a generic f ∈ H0 can be written as

f(x) =
N∑
j=1

αjK(x, xj) (3.1)

for some N ∈ N, XN := {xj}Nj=1 ⊂ Ω and α ∈ RN . We can assume without loss of
generality that the points XN are pairwise distinct, otherwise it is enough so sum the
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coefficients αj corresponding to two equal points, and that all the αj are non zero,
otherwise we can remove them from the sum.

Observe that the representation (3.1) does not need to be unique, i.e., it could be
that there exists N,M ∈ N, XN := {xj}Nj=1, YM := {yi}Mi=1 ⊂ Ω and α ∈ RN , β ∈ RM

such that

f(x) =
N∑
j=1

αjK(x, xj) =
M∑
i=1

βiK(x, yi) for all x ∈ Ω.

Second, following Property (ii) of Proposition 3.5 we can define a map B : H0 ×
H0 → R as

B (f, g) := B

(
N∑
j=1

αjK(x, xj),
M∑
i=1

βiK(x, yi)

)
:=

N∑
j=1

M∑
i=1

αjβiK(xj, yi). (3.2)

This map is well defined, i.e., it is independent of the particular representation of f, g.
Indeed, from the definition of g we have

B (f, g) =
N∑
j=1

M∑
i=1

αjβiK(xj, yi) =
N∑
j=1

αj

M∑
i=1

βiK(xj, yi) =
N∑
j=1

αjg(xj),

so it depends only on the values of g, not on its particular representation. The same
holds for f with the same argument.

Moreover, B is symmetric and bilinear from the definition and because K is sym-
metric. It is also positive definite because K is PD and thus

B (f, f) =
N∑

i,j=1

αjαiK(xj, xi) = αTAα ≥ 0.

This means that B is a semi inner product onH0, so we can introduce the notation
(f, g)H0 := B(f, g) for f, g ∈ H0. Recall that this implies that ‖f‖H0 :=

√
(f, f)H0 is a

seminorm and so it satisfies the Cauchy-Schwarz inequality.
We can now prove that K acts as a reproducing kernel onH0 w.r.t. (·, ·)H0 , i.e., that

it satisfies the two properties of Definition 3.2. Indeed, from the definition of H0 we
have K(·, x) ∈ H0 for all x ∈ Ω, and we can also compute the inner product with any
f ∈ H and obtain by definition (3.2) of (·, ·)H0

(f,K(·, x))H0
=

N∑
j=1

αjK(xj, x) = f(x).

What remains to have an inner product is to prove that it is non degenerate, i.e.,
(f, f)H0 = 0⇒ f = 0 for all f ∈ H0. To see this, we use the reproducing property and
the Cauchy-Schwarz inequality to obtain

|f(x)| =
∣∣(f,K(·, x))H0

∣∣ ≤ ‖f‖H0‖K(·, x)‖H0 for all x ∈ Ω,
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thus ‖f‖H0 = 0 implies f(x) = 0 for all x ∈ Ω.
So we have that (·, ·)H0 is an inner product on H0, i.e., H0 is a pre-Hilbert space

with inner product (·, ·)H0 and norm ‖ · ‖H0 .
This means that the completion of H0 with respect to ‖ · ‖H0 is an Hilbert space.

We denote it asHK(Ω) and its inner product as (·, ·)HK(Ω). In detail:

HK(Ω) := {f | ∃ {fn}n ⊂ H0 Cauchy sequence with lim
n→∞

fn = f},

and, for f := limn→∞ fn, g := limm→∞ gm,

(f, g)HK(Ω) :=
(

lim
n→∞

fn, lim
m→∞

gm

)
HK(Ω)

= lim
n→∞

lim
m→∞

(fn, gm)H0
.

Observe that of course H0 ⊂ HK(Ω) by construction, and an element f of H0 can be
obtained as limit of the Cauchy sequence {fn}n with fn := f for all n.

What remains to prove is that the elements of HK(Ω) are functions, and that K is
still a reproducing kernel on HK(Ω). To see this, observe that for f ∈ HK(Ω) and for
any Cauchy sequence {fn}n that converges to f , we have

|fn(x)− fm(x)| ≤ ‖fn − fm‖HK(Ω)

√
K(x, x) for all x ∈ Ω,

so {fn(x)}n is a Cauchy sequence in R, which is complete, so we can define f(x) :=
limn→∞ fn(x), and thus f is a pointwise defined function f : Ω→ R.

Moreover, the kernel K is a reproducing kernel on HK(Ω) since by construction
K(·, x) ∈ H0 ⊂ HK(Ω), and for all f ∈ HK(Ω) the reproducing property holds since

f(x) := lim
n→∞

fn(x) =
fn∈H0

lim
n→∞

(fn, K(·, x))H0

=
fn converges in H0

(
lim
n→∞

fn, K(·, x)
)
H0

=
fn→f

(f,K(·, x))HK(Ω).

Finally,HK(Ω) is unique. Indeed, ifH is another RKHS on Ω with reproducing kernel
K, we can use again Proposition 3.5 and prove thatH0 ⊂ H and that the inner product
is defined by B, and then we can use again this proof to concludeH = HK(Ω).

Remark 3.11. Two remarks on the proof:

• The representation (3.1) is unique if K is SPD (exercise).

• We need to check that the elements f or the completion are in fact functions, because
it can happen that they are something else. Consider for example the case of the com-
pletion of the space of continuous functions C((0, 1)) w.r.t. the inner product (f, g) :=∫ 1

0
f(x)g(x)dx. In this case the completion is L2((0, 1)), and the elements of this space

are equivalence classes, not pointwise defined functions.
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3.2.1 Consequences on K

We have seen in Theorem 1.9 that feature maps φ : Ω → R induce PD kernels via
K(x, y) := (φ(x), φ(y))H . Indeed, all PD kernels are of this type.

Proposition 3.12 (Kernel feature map). Let K be a PD kernel on Ω. Then the kernel is
defined by the feature map φ : Ω → HK(Ω), φ(x) := K(·, x), which is called the kernel
feature map.

Proof. Theorem 3.10 guarantees the existence of HK(Ω) and that φ(x) := K(·, x) ∈
HK(Ω) for all x ∈ Ω. Then from the reproducing property we have

(φ(x), φ(y))HK(Ω) = (K(·, x), K(·, y))HK(Ω) = K(x, y).

3.2.2 Consequences on Ω

The existence of a native space for a given kernel allows to define some structure on
the set Ω, even when Ω has no own structure (e.g., it could be a set of strings in the
case of the kernel of Example 2.13).

Proposition 3.13 (Metric on Ω). Let K be a PD kernel on a set Ω. Then we can define a
pseudo metric on Ω as

dK(x, y) := ‖K(·, x)−K(·, y)‖HK(Ω) =
√
K(x, x)− 2K(x, y) +K(y, y).

It is a metric if K is SPD.

Proof. By the definition, dK is positive, symmetric and satisfies the triangle inequality.
Moreover x = y implies K(·, x) = K(·, y) so dK(x, y) = 0, so it is a pseudo metric.

We can conclude that it is a metric if dK(x, y) = 0 implies x = y, and this is the case
ifK is SPD, since in this caseK(·, x) andK(·, y) are linearly independent (Proposition
3.8, Property iii).

The second equality is derived using the reproducing property of Definition 3.2:

‖K(·, x)−K(·, y)‖2
HK(Ω) = (K(·, x)−K(·, y), K(·, x)−K(·, y))HK(Ω)

= (K(·, x), K(·, x))HK(Ω) − 2 (K(·, x), K(·, y))HK(Ω) + (K(·, y), K(·, y))HK(Ω)

= K(x, x)− 2K(x, y) +K(y, y).



CHAPTER 3. KERNELS AND HILBERT SPACES 28

3.2.3 Consequences onHK(Ω)

Thanks to the construction of Theorem 3.10, it is also possible to deduce properties of
the elements of HK(Ω) just by looking at properties of the kernel. This is very useful
when solving approximation problems, since one can anticipate the smoothness of
the approximant by choosing a suitable kernel.

Proposition 3.14 (Native space and smoothness). Assume K is SPD on Ω. Then the
following holds:

i) If dim(Ω) =∞ then dim(HK(Ω)) =∞.

ii) Every f ∈ HK(Ω) is Lipschitz continuous w.r.t. dK .

iii) If moreover Ω ⊂ Rd is open and K ∈ C2k(Ω× Ω) for k ∈ N, then HK(Ω) ⊂ Ck(Ω). In
particular, for all multiindex a := (a1, . . . , ad) with |a| := a1 +a2 + · · ·+ad ≤ k it holds

Daf(x) := ∂a1

x(1)∂
a2

x(2) . . . ∂
ad
x(d)f(x) = (f,Da

2K(·, x))HK(Ω) , (3.3)

where the subscript 2 means that we differentiate w.r.t. the second argument.

Proof. The first two properties are consequences of the last propositions:

(i) Let dim(Ω) = N ≤ ∞, so we can select XN pairwise distinct points in Ω. Since
K is SPD, the functions {K(·, xi)}Ni=1 are linearly independent (Proposition 3.8,
Property iii), and by Theorem 3.10 we have {K(·, xi)}Ni=1 ⊂ HK(Ω). It follows
that dim(HK(Ω)) ≥ dim(Ω), so dim(Ω) =∞ implies dim(HK(Ω)) =∞.

(ii) Using Proposition 3.13 and the Cauchy-Schwarz inequality we have

|f(x)− f(y)| =
∣∣∣(f,K(·, x)−K(·, y))HK(Ω)

∣∣∣ ≤ ‖f‖HK(Ω) ‖K(·, x)−K(·, y)‖HK(Ω)

= ‖f‖HK(Ω)dK(x, y),

which proves Lipschitz continuity.

For the smoothness, we use the fact that, if K ∈ C2k(Ω × Ω) and |a| ≤ k, then
Da

2K(·, x) exists and is inHK(Ω). This will be proven later, when dealing with PDEs.

(iii) We prove the formula 3.3 by induction on |a|, which proves existence and conti-
nuity of the derivatives of f . For |a| = 0 formula 3.3 is just the reproducing prop-
erty. For |a| > 0, we can assume e.g. that a1 > 0 and define b := (a1−1, a2 . . . , ad).
Denoting as e1 the first unit vector in Rd, we have by the induction hypothesis
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and by definition of partial derivative that

Daf(x) = lim
h→0

1

h

(
Dbf(x+ he1)−Dbf(x)

)
= lim

h→0

1

h

[(
f,Db

2K(·, x+ he1)
)
HK(Ω)

−
(
f,Db

2K(·, x)
)
HK(Ω)

]
= lim

h→0

1

h

(
f,Db

2K(·, x+ he1)−Db
2K(·, x)

)
HK(Ω)

=

(
f, lim

h→0

1

h

(
Db

2K(·, x+ he1)−Db
2K(·, x)

))
HK(Ω)

= (f,Da
2K(·, x))HK(Ω) .

The same holds for any other b with |b| < k.

3.2.4 Basic operations onHK(Ω)

Finally, we show that some of the basic operations on PD kernels discussed in Propo-
sition 2.7 have a corresponding version in terms ofHK(Ω).

Proposition 3.15 (Basic operations on kernels -HK(Ω)). Let K,K1, K2 be PD kernels on
Ω× Ω→ R, g : Ω→ R \ {0}, a > 0. Then we have the following:

i) K(x, y) := g(x)g(y) results inHK(Ω) = span{g}.

ii) K(x, y) := aK1(x, y) results inHK(Ω) = HK1(Ω).

iii) K(x, y) := g(x)K1(x, y)g(y) results in HK(Ω) = gHK1(Ω) := {gf |f ∈ HK1(Ω)}
(weighted RKHS).

iv) K(x, y) := K1(x, y) +K2(x, y) results inHK(Ω) = HK1(Ω) +HK2(Ω).

v) K1 � K2 results inHK1(Ω) ⊂ HK2(Ω). Here� is the partial order on the set of positive
definite kernels on Ω defined by

K1 � K2 ⇔ K := K2 −K1 is PD

Proof. Exercise.



4. Interpolation in native spaces

Since we are dealing with interpolation, we assume in this Chapter that K is a SPD
kernel and Ω ⊂ Rd. With these assumptions, we have from Theorem 1.7 that for every
XN ⊂ Ω pairwise distinct and {fi}Ni=1 ⊂ R the kernel interpolant with data points XN

and data values {fi}Ni=1 exists and is unique.
When the data come from the sampling of an unknown function f , i.e., fi := f(xi),

1 ≤ i ≤ N , we denote the interpolant as sf instead of s to specify the dependence on
f .

Working with the native space HK(Ω), we can reformulate the process of kernel
interpolation as follows.

Proposition 4.1 (Interpolation in the native space). For any set XN of pairwise distinct
points, the linear space

V (XN) := span {K(·, xi), xi ∈ XN}

is an N -dimensional subspace of HK(Ω), and the kernel interpolant sf is an element of
V (XN).

Moreover, if f ∈ HK(Ω), we have

sf = ΠV (XN )(f),

where ΠV (XN ) is the orthogonal projection fromHK(Ω) to V (XN).

Proof. The fact that V (XN) ⊂ HK(Ω) follows from the construction of HK(Ω) in The-
orem 3.10, and sf ∈ V (XN) by definition of sf .

To prove that sf = ΠV (XN )(f), we need to prove that f−sf is orthogonal to V (XN),
i.e., since {K(·, xi)}Ni=1 is a basis of V (XN), that

(f − sf , K(·, xi))HK(Ω) = 0, 1 ≤ i ≤ N.

But from the reproducing property we obtain

(f − sf , K(·, xi))HK(Ω) = (f,K(·, xi))HK(Ω) − (sf , K(·, xi))HK(Ω)

= f(xi)− sf (xi) = 0, 1 ≤ i ≤ N,

since sf interpolates f in the points XN .

Since the interpolant is the orthogonal projection of f into V (XN), we can rewrite
the properties of orthogonal projection in the following way.

30
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Corollary 4.2 (Orthogonal decomposition). Let XN ⊂ Ω be a set of pairwise distinct
points. A function g ∈ HK(Ω) is orthogonal to V (XN) ⊂ HK(Ω) (i.e., g ∈ V (XN)⊥) if and
only if g(xi) = 0 for all xi ∈ XN .

Moreover, each f ∈ HK(Ω) can be uniquely decomposed as f = sf + (f − sf ) with

sf ∈ V (XN), sf (xi) = f(xi) for all xi ∈ XN

(f − sf ) ∈ V (XN)⊥, (f − sf )(xi) = 0 for all xi ∈ XN

(f, f − sf )HK(Ω) = 0

‖f‖2
HK(Ω) = ‖sf‖2

HK(Ω) + ‖s− sf‖2
HK(Ω).

Proof. It is a general property of orthogonal projections that any f ∈ HK(Ω) can be
uniquely decomposed in f = g + g⊥ with g = ΠV (XN )(f) and g⊥ = ΠV (XN )⊥(f). It
follows that (g, g⊥)HK(Ω) = 0 and thus

‖f‖2
HK(Ω) = (f, f)HK(Ω) = (g + g⊥, g + g⊥)HK(Ω)

= ‖g‖2
HK(Ω) + 2(g, g⊥)HK(Ω) + ‖g⊥‖2

HK(Ω)

= ‖g‖2
HK(Ω) + ‖g⊥‖2

HK(Ω).

Since we proved that sf = ΠV (XN )(f) = g, we have also g⊥ = f − g = f − sf , so we
obtain all the results in the Proposition.

4.1 Optimality of kernel interpolation

From the properties of orthogonal projections, we can deduce interesting optimality
properties of kernel interpolation.

This is interesting because one could try to find other ways to approximate the
function f ∈ HK(Ω). On one hand, still considering the ansatz

sf (x) :=
N∑
j=1

αjK(x, xj) ∈ V (XN),

it would be possible to determine the coefficient vector α by something different from
interpolation, e.g., by linear least squares.

On the other hand, it would be possible to keep the interpolation conditions sf (xi) =
f(xi), but instead avoid using the same ansatz, i.e., sf /∈ V (XN).

In both cases, we prove that we would obtain a worse approximation of f .

Proposition 4.3 (Interpolation gives best approximation). The kernel interpolant is the
unique best approximation of f ∈ HK(Ω) from the space V (XN), i.e.,

‖f − sf‖HK(Ω) = min
s∈V (XN )

‖f − s‖HK(Ω),

and the minimum is unique.
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Proof. It follows from the fact that sf is the orthogonal projection of f into V (XN)
(Proposition 4.1), and orthogonal projections give the unique best approximation.

Proposition 4.4 (Minimal norm interpolation). Consider the space of interpolating func-
tions inHK(Ω), i.e.,

S := {s ∈ HK(Ω) : s(xi) = f(xi), 1 ≤ i ≤ N} .

Then
‖sf‖HK(Ω) = min

s∈S
‖s‖HK(Ω),

and the minimum is unique.

Proof. Clearly sf ∈ S as it is an interpolant, so it is a candidate to be the minimal norm
interpolant. Moreover, sf is the unique interpolant of f in V (XN) by construction
(since the interpolant exists and it is unique).

Now we assume s ∈ S, and we prove that ‖s‖HK(Ω) ≥ ‖sf‖HK(Ω). Indeed, if s ∈
V (XN) we have immediately s = sf since sf is the unique interpolant of f in V (XN).

Otherwise, thanks to Corollary 4.2, we can uniquely decompose s as

s = g + g⊥

with g(xi) = s(xi) = f(xi) and g ∈ V (XN), thus g = sf . Moreover,

‖s‖2 = ‖g‖2
HK(Ω) + ‖g⊥‖2

HK(Ω),

so
‖sf‖2

HK(Ω) = ‖g‖2
HK(Ω) = ‖s‖2

HK(Ω) − ‖g⊥‖2
HK(Ω) ≤ ‖s‖2

HK(Ω).

Remark 4.5. Some remarks on the two propositions:

• Proposition 4.4 proves that we can solve a potentially infinite dimensional optimization
problem (since dim(S) =∞ when dim(HK(Ω)) =∞)) by solving a finite dimensional
linear system Aα = b.

• So far we considered the approximants obtained by removing one of the two conditions
defining sf , and we obtained in both cases that sf is a better approximation of f . We
could in principle try to compare sf with the solution obtained by removing both the
conditions, i.e., sf /∈ V (XN) and not satisfying the interpolation conditions. But in
this case the best approximation is

f = arg min
s∈HK(Ω)

‖f − s‖,

which is clearly the best possible approximation of f , but of course can not be computed
using only the data values {f(xi)}Ni=1.
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4.2 Simple bounds

Again using the properties of the orthogonal projection, we can obtain a first result
that proves that both the norm of the error and the norm of the interpolant are small
if the norm of f ∈ HK(Ω) is small. Moreover, we have that increasing the set of
interpolation points we get a smaller error.

Proposition 4.6. Let f ∈ HK(Ω), XN ⊂ Ω a set of pairwise distinct points and sf the
unique kernel interpolant of f on XN . Let moreover Y ⊂ Ω be a set of pairwise distinct points
with XN ⊂ Y , and let sY be the kernel interpolant of f on Y .

Then we have V (XN) ⊂ V (Y ) and

‖sf‖HK(Ω) ≤ ‖sY ‖HK(Ω) ≤ ‖f‖HK(Ω),

‖f − sY ‖HK(Ω) ≤ ‖f − sf‖HK(Ω) ≤ ‖f‖HK(Ω).

Proof. We have XN ⊂ Y so

V (XN) := span {K(·, xi), xi ∈ XN} ⊂ V (Y ) := span {K(·, yi), yi ∈ Y } .

Using Corollary 4.2 we obtain

‖sf‖HK(Ω) =
√
‖f‖2

HK(Ω) − ‖f − sf‖2
HK(Ω) ≤ ‖f‖HK(Ω),

‖f − sf‖HK(Ω) =
√
‖f‖2

HK(Ω) − ‖sf‖2
HK(Ω) ≤ ‖f‖HK(Ω).

Since sY is the interpolant of f on Y , using the same argument proves ‖sY ‖HK(Ω) ≤
‖f‖HK(Ω). Moreover, since XN ⊂ Y , sY is also an interpolant of f on XN . Then, with
the notation of Proposition 4.4 we have sY ∈ S, thus, again from the same proposition,

‖sf‖HK(Ω) ≤ ‖sY ‖HK(Ω).

For the second part we use instead Proposition 4.3. We proved V (XN) ⊂ V (Y ),
and sY is the kernel interpolant of f from V (Y ). So we obtain

‖f − sY ‖HK(Ω) ≤ ‖f − sf‖HK(Ω).

4.3 General error bounds and the power function

We move now to general error analysis of the interpolation process. General here
means that we derive results that hold for any SPD kernel, while we will obtain more
specific results and convergence rates for specific classes of kernels. In particular,
smoother kernels lead to native spaces of smoother functions (Proposition 3.14), so we
should expect a faster convergence in that case (as it is for polynomial interpolation,
for example).

The formulation of the results is easier if we consider the following basis of V (XN).
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Proposition 4.7 (Cardinal or Lagrange basis). There exists a cardinal or Lagrange basis
of V (XN), i.e., a basis {`j}Nj=1 of V (XN) such that

`j(xi) = δij 1 ≤ i, j ≤ N.

Moreover, the kernel interpolant of f ∈ HK(Ω) can be expressed as

sf (x) =
N∑
j=1

f(xj)`j(x). (4.1)

Proof. The existence of the Lagrange basis is a general result from Numerik I, but we
shortly see the proof.

Since kernel interpolation is well defined for any vector of values b := [fi]
N
i=1, we

define `j as the unique kernel interpolant on XN with data b := ej (the j-th coordinate
vector). By definition of kernel interpolation, this means that

`j ∈ V (XN) and `j(xi) = (ej)i = δij, 1 ≤ i, j ≤ N.

We now prove that they are a basis. Since they areN elements in V (XN), it suffices
to prove that they are linearly independent. To see this, we take α ∈ RN and assume∑N

j=1 αj`j(x) = 0 for all x ∈ Ω. For all 1 ≤ i ≤ N , taking x := xi we obtain

0 =
N∑
j=1

αj`j(xi) =
N∑
j=1

αjδij = αi,

so they are linearly independent.
To prove that formula (4.1) is correct, we define g(x) :=

∑N
j=1 f(xj)`j(x). We have

g ∈ V (XN) since {`j}Nj=1 is a basis of V (XN), and, for all 1 ≤ i ≤ N ,

g(xi) =
N∑
j=1

f(xj)`j(xi) = f(xi),

so g = sf by uniqueness of kernel interpolant.

We now introduce the anticipated error bound for the interpolation of f ∈ HK(Ω)
with data points XN . The motivation of the following reasoning is that we would
like to obtain some quantity, which we denote as PXN (x), such that we can bound the
pointwise interpolation error as

|f(x)− sf (x)| ≤ PXN (x) ‖f‖HK(Ω) for all x ∈ Ω,

and we would like this bound to be optimal, i.e., PXN (x) is the smallest possible
number such that the inequality holds for a fixed x ∈ Ω.
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This means that, for f ∈ HK(Ω), f 6= 0, we can look for the minimal number
PXN (x) such that

|f(x)− sf (x)|
‖f‖HK(Ω)

≤ PXN (x) for all x ∈ Ω.

It would be possible to just take this as a definition, i.e., define PXN (x) as

PXN (x) := sup
f∈HK(Ω),f 6=0

|f(x)− sf (x)|
‖f‖HK(Ω)

.

This definition is correct (as we will see in Proposition 4.12), but it makes things more
complicated. Instead, we take the following definition.

Definition 4.8 (Power function). Let XN ⊂ Ω pairwise distinct. The power function is a
function PXN : Ω→ R defined as

PXN (x) =

∥∥∥∥∥K(·, x)−
N∑
j=1

K(·, xj)`j(x)

∥∥∥∥∥
HK(Ω)

for all x ∈ Ω.

With this definition, we have the following fundamental theorem, which proves
that the power function gives the desired error bound and that it can actually be
computed.

Theorem 4.9 (Power function error bound – Schaback). Let XN ⊂ Ω pairwise distinct
and f ∈ HK(Ω). Then it holds

|f(x)− sf (x)| ≤ PXN (x) ‖f‖HK(Ω) for all x ∈ Ω. (4.2)

Moreover, the power function can be computed as

PXN (x) =

√√√√K(x, x)− 2
N∑
j=1

`j(x)K(x, xj) +
N∑

i,j=1

`j(x)`i(x)K(xj, xi). (4.3)

Remark 4.10. Some remarks before the proof:

• Since the Lagrange basis can be computed, the formula (4.3) really defines a computable
quantity (although this is not the best (most stable) way to compute the power function).
This means that the power function can be used also numerically and it provides good
indications on the interpolation error (see demo in ILIAS).

• The error bound (4.2) is very nice in the sense that it splits the error in two terms, one
depending only on the function f , and the other one depending only on K, Ω and XN .
This is somehow similar to the error bound for polynomial interpolation in d = 1 (see
Numerik I), which gives for f ∈ Cn+1(R)

|f(x)− pn(x)| ≤ 1

(n+ 1)!

∣∣∣∣∣
n∏
i=0

(x− xi)

∣∣∣∣∣ ∥∥f (n+1)
∥∥
∞ for all x ∈ [a, b].
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• As in the case of polynomial interpolation, where we obtained convergence estimates by
investigating the decay rate of the term 1

(n+1)!
|
∏n

i=0(x− xi)| depending on the points
{xi}ni=0 and the interval [a, b], we will obtain here convergence estimates by investigat-
ing the decay of the power function depending on XN , Ω, K.

Proof. We first prove the error bound (4.2). For f ∈ HK(Ω), using the formulation
(4.1) of the interpolant w.r.t. the Lagrange basis and the reproducing property of the
kernel K we obtain

sf (x) =
N∑
j=1

`j(x)f(xj) =
N∑
j=1

`j(x)(f,K(·, xj))HK(Ω) =

(
f,

N∑
j=1

`j(x)K(·, xj)

)
HK(Ω)

and also
f(x) = (f,K(·, x))HK(Ω).

So using bi-linearity of the inner product and the Cauchy-Schwarz inequality we ob-
tain

|f(x)− sf (x)| =

∣∣∣∣∣∣(f,K(·, x))HK(Ω) −

(
f,

N∑
j=1

`j(x)K(·, xj)

)
HK(Ω)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
(
f,K(·, x)−

N∑
j=1

`j(x)K(·, xj)

)
HK(Ω)

∣∣∣∣∣∣
≤ ‖f‖HK(Ω)

∥∥∥∥∥K(·, x)−
N∑
j=1

`j(x)K(·, xj)

∥∥∥∥∥
HK(Ω)

= ‖f‖HK(Ω)PXN (x),

where we used Definition 4.8 of the power function.
We can now prove the formula (4.3) using the fact that (K(·, x), K(·, y))HK(Ω) =

K(x, y) (by the reproducing property) :

PXN (x)2 =

∥∥∥∥∥K(·, x)−
N∑
j=1

`j(x)K(·, xj)

∥∥∥∥∥
2

HK(Ω)

=

(
K(·, x)−

N∑
j=1

`j(x)K(·, xj), K(·, x)−
N∑
i=1

`i(x)K(·, xi)

)
HK(Ω)

= K(x, x)− 2
N∑
j=1

`j(x)K(x, xj) +
N∑

i,j=1

`j(x)`i(x)K(xj, xi).
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4.3.1 Properties of the power function

We see now some alternative characterization of the power function, which will be
useful to prove properties of this error estimation. Moreover, we prove also that the
informal definition at the beginning of this section was indeed correct.

We first need the following result on the Lagrange basis.

Proposition 4.11. The cardinal (or Lagrange) basis of V (XN) can be obtained by the follow-
ing formula

`j(x) =
N∑
i=1

(
A−1

)
ij
K(x, xi), 1 ≤ j ≤ N. (4.4)

Moreover, for all x ∈ Ω the interpolant of the function fx := K(·, x) is

sfx(·) =
N∑
j=1

`j(x)K(·, xj). (4.5)

Proof. The first part is a result proven in Numerik I, but we see a short proof. Since
the formula (4.4) defines a function in V (XN), and since the Lagrange basis is unique
by Proposition 4.11, we just need to check that with this new formula it holds `j(xk) =
δkj :

`j(xk) =
N∑
i=1

(A−1)ijK(xk, xi) =
N∑
i=1

(A−1)ijAki =
(
AA−1

)
kj

= δkj.

Now, we take fx := K(·, x) for x ∈ Ω and consider the interpolant sfx , which is of
the form

sfx(·) =
N∑
j=1

αj(x)K(·, xj),

where the coefficients α(x) ∈ RN are such that sfx(xk) = fx(xk) = K(xk, x) for 1 ≤
k ≤ N . We prove that the coefficients are αj(x) = `j(x). Indeed, we can substitute the
formula for the Lagrange basis and obtain

sfx(xk) =
N∑
j=1

`j(x)K(xk, xj) =
N∑
j=1

(
N∑
i=1

(
A−1

)
ij
K(x, xi)

)
K(xk, xj)

N∑
i=1

K(x, xi)
N∑
j=1

(
A−1

)
ij
K(xk, xj) =

N∑
i=1

K(x, xi)
N∑
j=1

(
A−1

)
ij
Akj

=
N∑
i=1

K(x, xi)δik = K(x, xk).

Since the interpolant is unique, we can conclude that sfx(·) =
∑N

j=1 `j(x)K(·, xj).

We can now prove the alternative ways to define the power function.
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Proposition 4.12 (Characterization of the power function). For every x ∈ Ω, we have

i) PXN (x) = ‖fx − sfx(·)‖HK(Ω) with fx := K(·, x)

ii) PXN (x) =
√
K(x, x)−

∑N
j=1 K(x, xj)`j(x)

iii) PXN (x) = supf∈HK(Ω),f 6=0
|f(x)−sf (x)|
‖f‖HK (Ω)

.

Proof. i From Definition 4.8 the power function is PXN (x) =
∥∥∥K(·, x)−

∑N
j=1K(·, xj)`j(x)

∥∥∥
HK(Ω)

,

and from Proposition 4.11 sfx(·) =
∑N

j=1 `j(x)K(·, xj), so the results follows im-
mediately.

ii We have from equation (4.3) in Theorem 4.9 that the power function can be com-
puted as

PXN (x)2 = K(x, x)− 2
N∑
j=1

`j(x)K(x, xj) +
N∑

i,j=1

`j(x)`i(x)K(xj, xi),

and we can simplify the last term using Proposition 4.11:

N∑
i,j=1

`j(x)`i(x)K(xj, xi) =
N∑
j=1

`j(x)
N∑
i=1

`i(x)K(xj, xi) =
N∑
j=1

`j(x)sfx(xj)

=
N∑
j=1

`j(x)K(xj, x),

since sfx(xj) = fx(xj) = K(x, xj).

It follows that PXN (x)2 = K(x, x)−
∑N

j=1 `j(x)K(x, xj).

iii From Theorem 4.9 we know already that for all x ∈ Ω it holds

|f(x)− sf (x)| ≤ PXN (x) ‖f‖HK(Ω) , (4.6)

so
sup

f∈HK(Ω),f 6=0

|f(x)− sf (x)|
‖f‖HK(Ω)

≤ PXN (x).

We just need to find a function for which equality holds,

This works by taking f := fx − sfx = K(·, x) −
∑N

j=1 `j(x)K(·, xj). Indeed, the
interpolant of f is sf = 0 from Corollary 4.2 (since f(xi) = fx(xi)− sfx(xi) = 0).
It follows that the left hand side of equation (4.6) can be written, using Property
ii, as

|fx(x)− sfx(x)| = K(x, x)−
N∑
j=1

`j(x)K(x, xj) = PXN (x)2
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and the right hand side, using Property i, is

PXN (x) ‖f‖HK(Ω) = PXN (x) ‖fx − sfx‖HK(Ω) = PXN (x)2.

Using this new characterizations, we can prove that the error bound provided by
the power function is good, in the sense that it is bounded, it is exact on the interpo-
lation points, and it is decreasing when the number of interpolation points increases.

Proposition 4.13 (Properties of the power function). LetXN ⊂ Ω pairwise distinct. Then
we have

i) PXN (x) ≤
√
K(x, x) for all x ∈ Ω (the error is bounded for all x ∈ Ω)

ii) PXN (x) = 0 if and only if x ∈ XN (the bound is exact in the interpolation points)

iii) If Y ⊂ Ω is finite and XN ( Y , then PY (x) < PXN (x) for all x ∈ Ω \XN (the error is
strictly decreasing if the interpolation set is increasing)

Proof. We use Property (i) of Proposition 4.12, i.e., PXN (x) = ‖fx − sfx‖HK(Ω) with
fx := K(·, x).

i From Proposition 4.6 the norm of the interpolation error is smaller than the norm
of f . Thus

PXN (x) = ‖fx − sfx‖HK(Ω) ≤ ‖fx‖HK(Ω) =
√

(K(·, x), K(·, x))HK(Ω) =
√
K(x, x).

ii PXN (x) = 0 if and only if ‖fx − sfx‖HK(Ω) = 0 if and only if fx = sfx , and the
interpolation is exact if and only if fx ∈ V (XN). Since fx = K(·, x), this is
possible if and only if xi ∈ XN , because K(·, x) is linearly independent from
{K(·, xi)}Ni=1 if x /∈ XN .

iii From Proposition 4.6, interpolation on a larger set gives smaller error, so PY (x) <
PXN (x).

Remark 4.14. Observe that Property ii does not mean that the interpolation error can be zero
only on the interpolation points. Indeed, the error bound is

|f(x)− sf (x)| ≤ PXN (x) ‖f‖HK(Ω) for all x ∈ Ω,

so the power function is only an upper bound on the error. It can happen that the left hand
side is zero for some x ∈ Ω, while the right hand side is not.

The result only means that the upper bound on the right is guaranteed to be zero (so, exact)
when x ∈ XN .
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Finally, we see another characterization of the power function. It would be the key
element in the error bound we will prove in Section 4.5. Observe that in the book [1]
this is directly used as a definition of the power function, and the other definitions
are derived from this one.

Proposition 4.15 (Power function and quadratic form). For XN ⊂ Ω pairwise distinct
and x ∈ Ω, consider the vectors

b(x) := [K(x, x1), K(x, x2), . . . , K(x, xN)]T ∈ RN , u∗(x) := [`1(x), `2(x), . . . , `N(x)]T ∈ RN .

For u ∈ RN define the quadratic form

Q(u) := K(x, x)− 2
N∑
j=1

ujK(x, xj) +
N∑

i,j=1

ujuiK(xj, xi) = K(x, x)− 2uT b(x) + uTAu.

Then it holds
PXN (x) =

√
Q(u∗(x)) = min

u∈RN

√
Q(u).

Proof. If we substitute the vector u∗(x) in the definition ofQ, we obtain from equation
4.3 in Theorem 4.9 that PXN (x) =

√
Q(u∗(x)).

We can then consider the quadratic form Q and minimize it w.r.t. u ∈ RN : We
have

du(Q(u)) = du
(
K(x, x)− 2uT b(x) + uTAu

)
= 2Au− 2b(x).

Thus du(Q(u)) = 0 if and only if Au = b(x), i.e., if and only if u = A−1b(x), i.e., from
the definition of b(x) and Proposition 4.11

uj =
N∑
i=1

(A−1)ijK(x, xi) = `j(x).

From the definition of u∗(x), this means that u∗(x) minimizes Q.

4.4 General stability bounds

We conclude this part on general results (i.e., applicable to any SPD kernel) by stating
a result on the stability of the interpolation process. This result is indeed a bound on
the largest and smaller eigenvalues of the kernel matrix.

Theorem 4.16 (Condition number of kernel matrix). Let XN ⊂ Ω be pairwise distinct, A
the corresponding kernel matrix and λmin, λmax be its minimal and maximal eigenvalues. For
every xi ∈ XN , consider the power functions PXN\{xj} of the sets XN \ {xj}.

Then the condition number of A is κ(A) = λmax/λmin, and it holds

λmax ≤ N max
1≤j≤N

K(xj, xj)

and
λmin(A) ≤ min

1≤j≤N
PXN\{xj}(xj)

2 (4.7)
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Proof. Since A is symmetric positive definite, its singular values are the eigenvalues,
so κ(A) = λmax/λmin.

For the maximal eigenvalue we use the Gershgorin circle theorem: for all 1 ≤ i ≤
N , we have

|λmax − Aii| ≤
N∑

j=1,j 6=i

|Aij|,

thus
λmax ≤ N max

1≤i,j≤N
|Aij| = N max

1≤i,j≤N
|K(xi, xj)| ≤ N max

1≤j≤N
|K(xj, xj)|,

since K(x, y)2 ≤ K(x, x)K(x, y) for all x, y ∈ Ω from Proposition 2.5.
For the minimal eigenvalue we use the characterization of the power function of

Proposition 4.15. We consider for simplicity the case xj = xN and use the notation
XN−1 := XN \ {xN}. Moreover, we denote as AN−1the kernel matrix of XN−1, and
as bN−1(x) and u∗N−1(x) the vectors of Proposition 4.15 corresponding to the points
XN−1. We have

PXN−1
(xN)2 = (u∗N−1(xN))TAN−1u

∗
N−1(xN)− 2(u∗N−1(xN))T bN−1(xN) +K(xN , xN)

=
[
(u∗N−1(xN))T ,−1

] [ AN−1 bN−1(xN)
bN−1(xN)T K(xN , xN)

] [
u∗N−1(xN)
−1

]
.

Since bN−1(xN) := [K(xN , x1), K(xN , x2), . . . , K(xN , xN)]T , we have that the matrix in
the bilinear form is exactly A, i.e., the kernel matrix of the full set of points XN . Then
it holds

PXN−1
(xN)2 =

[
(u∗N−1(xN))T ,−1

]
A

[
u∗N−1(xN)
−1

]
≥ λmin

∥∥∥[(u∗N−1(xN))T ,−1
]T∥∥∥2

2

≥ λmin

(∥∥u∗N−1(xN)
∥∥2

2
+ 1
)
≥ λmin,

since uTAu ≥ λmin‖u‖2
2 for all u ∈ RN .

Remark 4.17. The relation (4.7) between the power function and the minimal eigenvalue has
been known for a lot of time as trade-off principle, because it shows that it is impossible to
obtain good approximation error (i.e., small power function) and in the same time to have also
good conditioning of the kernel matrix (i.e., large minimal eigenvalue).

But this is true only if the interpolant is computed by solving the full linear system Aα =
b, while this trade-off is not present if one computes the interpolant in other ways.

This is the only way to compute the interpolant that we have seen so far, but in the next
we will see some algorithms that try to mitigate the problem by avoiding the solution of the
full linear system.
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4.5 Error bounds

We can finally obtain the full error bounds. As in the case of polynomial interpolation,
the plan is to start from the error bound

|f(x)− sf (x)| ≤ PXN (x) ‖f‖HK(Ω) for all x ∈ Ω,

and to obtain bounds on the power function by investigating the dependence on the
kernel K, the points XN and the set Ω, and by identifying “good“ kernels, points, and
sets.

4.5.1 Interpolation points

The quality of the points can be measured by looking at how well distributed they
are. In dimension d = 1 it is easy: we have an interval [a, b] and points a ≤ x1 < x2 <
· · · < xN ≤ bwith distances hi := xi−xi−1, 2 ≤ i ≤ N , and h0 := x1−a, hN+1 := b−xN ,
and we can define the grid size as

h := max
0≤i≤N+1

hi.

To have good interpolation, we should consider a set of points XN with small grid
size, otherwise there are ”large holes“ in [a, b]. This idea can be generalized to higher
dimensions d ≥ 1 by considering instead the fill distance, which is the radius of the
largest ball B with center in Ω, and such that B ∩Ω does not contain any point of XN .

Definition 4.18 (Fill distance). Let XN ⊂ Ω. The fill distance of XN in Ω is defined as

hN := hXN ,Ω := sup
x∈Ω

min
xj∈XN

‖x− xj‖2
2

Figure 4.1: Grid size and fill distance.



CHAPTER 4. INTERPOLATION IN NATIVE SPACES 43

4.5.2 Interpolation set

On Ω, instead, we need the following assumption.

Definition 4.19 (Interior cone condition). A set Ω ⊂ Rd satisfies an interior cone condition
if there is a radius r > 0 and an angle θ ∈ (0, π/2) such that the cone C(r, θ) of radius r and
angle θ can be centered at any point in Ω and rotated such that C(r, θ) ⊂ Ω̄.

Figure 4.2: Set satisfying a cone condition with radius r and angle θ.

This condition guarantees the existence of a stable local polynomial reproduction
(Theorem 3.14 in [5]). It just follows from geometrical assumptions on Ω, and it is not
necessarily related to kernels.

Proposition 4.20. Assume Ω ⊂ Rd is bounded and satisfies an interior cone condition with
angle θ ∈ (0, π/2) and radius r > 0. Let m ∈ N. Then there exist constants c1, c2, h0 > 0
such that for all XN with fill distance hN ≤ h0 and for all x ∈ Ω there exists ũ(x) :=
[ũ1(x), . . . ũN(x)]T ∈ RN such that

i)
∑N

j=1 ũj(x)p(xj) = p(x) for all polynomial p of degree m on Rd

ii)
∑N

j=1 |ũj(x)| ≤ c1

iii) ũj(x) = 0 if ‖x− xj‖2 > c2hN .

4.5.3 Error bound

We finally have the error bound.

Theorem 4.21 (Error bound). Let Ω ⊂ Rd be open, bounded, and satisfying a cone condi-
tion. Assume that XN ⊂ Ω has fill distance hN . Let k ∈ N and K : Ω × Ω → R be a SPD
kernel with K ∈ C2k(Ω× Ω). Let a ∈ Nd

0 with |a| ≤ k.
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Then there exists constants C, h0 > 0, independent of x,K, f ∈ HK(Ω), such that if
hN ≤ h0 it holds

|Daf(x)−Dasf (x)| ≤ C CK h
k−|a|
XN
‖f‖HK(Ω) for all x ∈ Ω. (4.8)

The constant CK is defined as

C2
K := max

b,c ∈Nd0
|b|+|c|=2k

(
max

y,z∈Ω∩B(x,chN )

∣∣Db
1D

c
2K(z, y)

∣∣)

where c = c2 of Proposition 4.20 if |a| = 0.

Proof. We see only a sketch of the proof for the case |a| = 0. The complete proof can
be found in [5], Theorem 11.13, or [1], Theorem 14.5 (only for the case |a| = 0).

The idea is to start from the bound of Proposition 4.9, i.e.,

|f(x)− sf (x)| ≤ PXN (x) ‖f‖HK(Ω) for all x ∈ Ω.

Then the goal is to find a bound on the power function. We can use Proposition 4.15,
i.e.,

PXN (x)2 = Q(u∗(x)) = min
u∈RN

Q(u).

In particular, for all x ∈ Ω, we have

PXN (x)2 ≤ Q(ũ(x)),

where ũ(x) is the vector of Proposition 4.20, which exists because Ω satisfies an inte-
rior cone condition. This means

PXN (x)2 ≤ Q(ũ(x)) = K(x, x)− 2
N∑
j=1

ũj(x)K(x, xj) +
N∑

i,j=1

ũj(x)ũi(x)K(xj, xi)

= K(x, x)− 2
∑
j∈J(x)

ũj(x)K(x, xj) +
N∑

i,j∈J(x)

ũj(x)ũi(x)K(xj, xi),

where J(x) is the set of indexes such that ũj(x) 6= 0 from Property (iii). This means
that all the xj that appear in the sums are at most at distance ‖x−xj‖2 ≤ c2hN from x.

The rest of the proof is to compute Taylor expansions up to order k of the terms
K(x, xj) and K(xi, xj), which can be done since the kernel is in C2k(Ω× Ω).

Then the final bound can be obtained by using the polynomial reproduction prop-
erty (i) of Proposition 4.20 to sum the polynomial parts of the Taylor expansions, and
by bounding the remainders using (ii) of Proposition 4.20 and the constant CK .

Remark 4.22. Some remarks on the Theorem:

• The error bound states that one should have “well distributed” points XN (i.e., small
fill distance) to obtain good approximation.
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• The error bound tells us that, by kernel interpolation, not only one obtains pointwise
convergence, but also convergence of all the derivatives up to a certain order.

• As can be expected, the rate of convergence is reduced of a factor 1 for every deriva-
tive. This is reasonable as the smoothness of the target function is reduced every time a
derivative is taken.

• This is a worst-case error bound, i.e., it applies to all functions f ∈ HK(Ω). In practice,
it is possible to have single functions for which the convergence is faster.

• The fill distance is a dimension dependent quantity, since to have a fill distance hN in
Ω ⊂ Rd, one needs to have N = O(h−dN ) points.

Finally, we have seen the idea of the proof for the case |a| = 0. The more general
case follows from the same argument by using the following generalization of the
power function. It is completely similar to the case of the power function defined
above, but it makes things more complicated. So we just introduce its definition in
the following, and we just prove that it is a good definition for an upper bound.

Proposition 4.23 (Power function for derivatives). Let XN ⊂ Ω pairwise distinct and
f ∈ HK(Ω). Let k ∈ N and K ∈ C2k(Ω × Ω), Let a ∈ Nd

0 with |a| ≤ k. Then a generalized
power function can be defined as

P a
XN

(x) :=

∥∥∥∥∥Da
2K(·, x)−

N∑
j=1

K(·, xj)Da`j(x)

∥∥∥∥∥
HK(Ω)

. (4.9)

and it holds

|Daf(x)−Dasf (x)| ≤ P a
XN

(x)‖f‖HK(Ω), for all x ∈ Ω. (4.10)

Moreover
P a
XN

(x) =
√
Qa(Dau∗(x)) = min

u∈RN

√
Qa(u).

with

Qa(u) := Da
1D

a
2K(x, x)− 2

N∑
j=1

ujD
a
1K(x, xj) +

N∑
i,j=1

ujuiK(xj, xi).

Proof. We only see the proof of the error bound. We have from Property iii of Propo-
sition 3.14 that, if Ω ⊂ Rd is open and K ∈ C2k(Ω×Ω), then for all a ∈ Nd

0 with |a| ≤ k
it holds

Daf(x) = (f,Da
2K(·, x))HK(Ω) .

Moreover, we have

Dasf (x) = Da

(
N∑
j=1

`j(x)f(xj)

)
=

N∑
j=1

Da`j(x)f(xj) =

(
f,

N∑
j=1

Da`j(x)K(·, xj)

)
HK(Ω)
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Then we can conclude by Cauchy- Schwarz:

|Daf(x)−Dasf (x)| =

∣∣∣∣∣∣(f,DaK(·, x))HK(Ω) −

(
f,

N∑
j=1

Da`j(x)K(·, xj)

)
HK(Ω)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
(
f,DaK(·, x)−

N∑
j=1

Da`j(x)K(·, xj)

)
HK(Ω)

∣∣∣∣∣∣
≤ ‖f‖HK(Ω)P

a
XN

(x).



5. Translational invariant and RBF
kernels

We consider now a special classes of kernels, i.e., translational invariant kernels. They
are of great interest in approximation for several reasons. Indeed, they include as a
special case Radial Basis Function (RBF) kernels, which are practically the most used
kernels for interpolation, as they are easy to implement in terms of the distance matrix
(see Remark 2.11). Moreover, the analysis in this case has very strong connections to
the theory of Fourier transform and Sobolev spaces.

Definition 5.1 (Translational invariant and RBF kernels). A kernel K : Rd ×Rd → R is
translational invariant if

K(x, y) = K(x+ z, y + z) for all x, y, z ∈ Rd.

It is radial (or radially invariant) if

K(x, y) = K(z, w) for all x, y, z, w ∈ Rd with ‖x− y‖2 = ‖z − w‖2.

5.1 Characterization of translational invariant and radial
kernels

These two classes of kernels can be represented in a more convenient form as follows.

Proposition 5.2 (Characterization of translational and radial invariance). A kernel K
is translational invariant if and only if there exists Φ : Rd → R such thatK(x, y) = Φ(x−y)
for all x, y ∈ Rd.

A kernel K is radial if and only if there exists Φ : R≥0 → R such that K(x, y) =
Φ(‖x− y‖2) for all x, y ∈ Rd.

Proof. We see the two cases separately:

(Transl.) If K(x, y) = Φ(x − y) clearly it holds K(x + z, y + z) = Φ(x + z − y − z) =
Φ(x− y) = K(x, y), so K is translational invariant.

Assume instead K(x, y) = K(x+ z, y+ z) for all x, y, z ∈ Rd. For a fixed x0 ∈ Rd,
set Φ(x) := K(x0, x0 − x). Using z := −x+ x0, it follows that

K(x, y) = K(x− x+ x0, y − x+ x0) = K(x0, x0 − (x− y)) = Φ(x− y).

The function Φ is independent of the particular choice of x0, since for any x′0 ∈
Rd it holds

Φ(x) := K(x0, x0 − x) = K(x0 + (x′0 − x0), x0 − x+ (x′0 − x0)) = K(x′0, x
′
0 − x).

47
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(Rotat.) If K(x, y) = Φ(‖x − y‖2) clearly it holds K(x, y) = K(z, w) for all x, y, z, w ∈
Rd with ‖x− y‖2 = ‖z − w‖2, so K is radial.

Assume insteadK(x, y) = K(z, w) for all x, y, z, w ∈ Rd with ‖x−y‖2 = ‖z−w‖2.
For fixed x0 ∈ Rd, set Φ(r) := K(x0, x0 + re1), with e1 ∈ Rd the first unit vector.
Using z := x0 and w := x0 +‖x−y‖2e1 we have ‖x−y‖2 = ‖z−w‖2, so it follows
that

K(x, y) = K(x0, x0 + ‖x− y‖2e1) = Φ(‖x− y‖2).

Again, the definition is independent of x0, e1: if x′0, v ∈ Rd and ‖v‖2 = 1, we
have

Φ(r) := K(x0, x0 + re1) = K(x′0, x
′
0 + rv),

since ‖x0 + re1 − x0‖2 = ‖x′0 + rv − x′0‖2.

Remark 5.3. Some remarks on the definitions:

• A radial kernel is usually called a Radial Basis Function (RBF) kernel. Sometimes there
is confusion of notions between Φ and K, which are both called RBF.

• It is clear that RBF kernels are in particular translational invariant, asK(x+z, y+z) =
Φ(‖x+ z − y − z‖2) = Φ(‖x− y‖2) = K(x, y).

• RBF kernels are usually defined up to a scaling factor ε > 0, i.e., they are defined as
K(x, y) := Φ(ε‖x − y‖2). This parameter is called shape parameter, and it does not
change the radial invariance, but allows to control the “support” of the kernel.

• The representation of K in terms of Φ is useful because it allows to deduce properties of
K by looking at the possibly simpler function Φ (which is univariate in the case of RBF
kernels). Moreover, in the case of RBF kernels, it makes also implementation easier, as
we have seen with the Gaussian kernel.

• We will see how to obtain PD or SPD of K from some properties of Φ. In the case K
is a positive or strictly positive definite kernel, the function Φ will be called a positive
or strictly positive definite function. In the case of RBF kernels, since the function Φ is
univariate, it is called positive or strictly positive definite function on Rd if the kernel
K(x, y) = Φ(‖x− y‖2) is PD or SPD for x, y ∈ Rd.

5.2 Translational invariant PD kernels and Fourier trans-
form

We will now provide a connection between PD of translational invariant kernels and
the Fourier transform of the function Φ.

First, recall the definition of the Fourier transform (see Analysis I/II/III).
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Definition 5.4 (Fourier transform). For f ∈ L1(Rd) we define the Fourier transform of f
as

f̂(ω) := Ff(ω) := (2π)−d/2
∫
Rd
f(x)e−ix

Tωdx, ω ∈ Rd.

and the inverse Fourier transform as

f̌(ω) :=
(
F−1f(ω) :=

)
(2π)−d/2

∫
Rd
f(x)eix

Tωdx, ω ∈ Rd.

The following is the more general characterization of positive definiteness of K in
terms of Φ, and it is considered a fundamental theorem in the theory of kernels. We
just see its statement.

Theorem 5.5 (Bochner). Let Φ be a continuous function. Then K(x, y) := Φ(x− y) is pos-
itive definite if and only if Φ is the Fourier transform of a non-negative, finite, Borel measure
µ, i.e.,

Φ(x) = (2π)−d/2
∫
Rd
e−ix

Tωdµ(ω), x ∈ Rd.

5.2.1 A more simple characterization

There is a much more simple version of this theorem under further assumptions on
the function Φ, and it will apply to all kernels of interest.

Recall that, in the case of the Gaussian kernel, we have proven in Proposition
2.10 that it is strictly positive definite by proving that it is the Fourier transform of
a positive function f . This means that it is the Fourier transform of the measure
dµ(ω) := f(ω)dω, which is finite and non-negative. This idea can be generalized.

First, we need to recall some properties of the Fourier transform (see again Anal-
ysis I/II/III or [5, Chapter 5]).

Proposition 5.6 (Properties of Fourier transform). Let f ∈ L1(Rd)

i) f̂ is continuous.

ii) If f(x) = f(−x) for all x ∈ Rd, then f̂(x) ∈ R.

iii) If also f̂ ∈ L1(Rd) then F−1(f̂) = f .

iv) If g ∈ L1(Rd) then
∫
Rd f(x)ĝ(x)dx =

∫
Rd f̂(x)g(x)dx.

v) If a ∈ Rd, then F (f)(x− a) = e−ix
T af̂(x).

We now see some properties of translational invariant PD kernels that will be
useful later, when computing their Fourier transforms.

Proposition 5.7 (Properties of PD translational invariant kernels). LetK(x, y) = Φ(x−
y) be a PD translational invariant kernel on Rd. Then for all x ∈ Rd it holds
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i) Φ(x) = Φ(−x), thus Φ̂(x) ∈ R.

ii) Φ(0) ≥ 0.

iii) |Φ(x)| ≤ Φ(0).

iv) Φ(0) = 0 implies Φ = 0.

Proof. The first property is a direct consequence of the definition and of symmetry of
K:

i Φ(x) = Φ(x− 0) = K(x, 0) = K(0, x) = Φ(0− x) = Φ(−x).

The other ones follow from the general properties of PD kernels proven in Proposition
2.5

ii 0 ≤ K(x, x) = Φ(x− x) = Φ(0).

iii |Φ(x)| = |K(x, 0)| ≤
√
K(x, x)

√
K(0, 0) =

√
Φ(x− x)

√
Φ(0− 0) = Φ(0).

iv It follows from point iii.

Finally, we need the following tool. The idea is to have a proper formalization of
the concept that “the δ function is the identity of the convolution”, i.e.,

“(f ∗ δ)(x) =

∫
Rd
f(y)δ(y − x)dy = f(x)′′,

(which is well defined only in the sense of distributions). A possible formalization
is the concept of approximation by convolution (see again Analysis I/II/III or [5,
Chapter 5]).

Proposition 5.8 (Approximation by convolution). Letm ∈ N and gm(x) := (m/π)d/2e−m‖x‖
2
2 ,

x ∈ Rd. Then the following hold:

i)
∫
Rd gm(x) = 1.

ii) ĝm(x) = (2π)−d/2e−‖x‖
2
2/(4m).

iii) F (F (gm)) (x) = gm(x).

iv) f(x) = limm→∞(f ∗ gm)(x) := limm→∞
∫
Rd f(y)gm(y − x)dy if f is slowly increasing,

i.e., there exists n ∈ N such that f(x) = O(‖x‖n2 ) for ‖x‖2 →∞.

Finally, we can state the Corollary of Theorem 5.5.

Corollary 5.9. Let Φ : Rd → R, Φ ∈ L1(Rd) ∩ C(Rd) . Then K(x, y) := Φ(x− y) is PD if
and only if Φ is bounded and Φ̂(ω) ≥ 0 for all ω ∈ Rd. It is SPD if and only if Φ̂(ω) > 0 for
all ω ∈ Rd.
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Proof. We prove only one implication, i.e, that Φ with these properties results in K
PD. The other one can be found in [5], Theorem 6.11.

If we prove that Φ̂ ∈ L1(Rd), we can conclude by Property (iii) of Proposition 5.6
that

Φ(x) = F−1(Φ̂)(x) = (2π)−d/2
∫
Rd
eix

TωΦ̂(ω)dω.

This is enough to prove PD or SPD of K. Indeed, we can use the same proof as in
Proposition 2.10 for the Gaussian kernel, i.e., for a set XN of pairwise distinct points,
we have

αTAα =
N∑

j,l=1

αjαlK(xj, xl) =
N∑

j,l=1

αjαlΦ(xj − xl)

= (2π)−d/2
N∑

j,l=1

αjαl

∫
Rd
ei(xj−xl)

TωΦ̂(ω)dω

= (2π)−d/2
∫
Rd

(
N∑

j,l=1

αjαle
i(xj−xl)Tω

)
Φ̂(ω)dω

= (2π)−d/2
∫
Rd

∣∣∣∣∣
N∑
j=1

αje
ixTj ω

∣∣∣∣∣
2

Φ̂(ω)dω.

Since XN are pairwise distinct, we have
∣∣∣∑N

j=1 αje
ixTj ω

∣∣∣2 > 0. Thus αTAα ≥ 0 if Φ̂ ≥ 0,

and αTAα > 0 if Φ̂ > 0.
To prove that Φ̂ ∈ L1(Rd), we use the approximation by convolution (iv) of Propo-

sition 5.8, which can be applied because |Φ(x)| ≤ Φ(0) ((iii) of Proposition 5.7), so the
function is slowly increasing. We have

(2π)d/2Φ(0) = (2π)d/2 lim
m→∞

(φ ∗ gm)(0) = (2π)d/2 lim
m→∞

∫
Rd

Φ(y)gm(y − 0)dy

= (2π)d/2 lim
m→∞

∫
Rd

Φ(y)gm(y)dy.

Now we can use Property (iv) of Proposition 5.6, since F (F (gm)) (x) = gm(x) by (iii)
of Proposition 5.8:

(2π)d/2Φ(0) = (2π)d/2 lim
m→∞

∫
Rd

Φ(y)gm(y)dy = (2π)d/2 lim
m→∞

∫
Rd

Φ̂(y)ĝm(y)dy,

and use the Monotone Convergence Theorem to exchange the integral and the limit

(2π)d/2Φ(0) = (2π)d/2 lim
m→∞

∫
Rd

Φ̂(y)ĝm(y)dy = (2π)d/2
∫
Rd

lim
m→∞

(
Φ̂(y)ĝm(y)

)
dy

=

∫
Rd

Φ̂(y)
(

lim
m→∞

(2π)d/2ĝm(y)
)
dy =

∫
Rd

Φ̂(y)dy,
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since limm→∞(2π)d/2ĝm(x) = 1 for all x ∈ Rd by (ii) of Proposition 5.8.
It follows that

∫
Rd Φ̂(y)dy = (2π)d/2Φ(0), so Φ̂ ∈ L1(Rd) since Φ is bounded by

hypothesis.

Remark 5.10. The direction we proved is the most interesting for our aims, as we will be
able to prove that a kernel is (S)PD by proving that Φ is bounded and Φ̂(x) ≥ 0. The other
direction is useful only if one wants to construct a new kernel starting from a particular Φ.

5.3 Sobolev spaces and native spaces

We move now to the connection between native spaces of translational invariant ker-
nels and Sobolev spaces.

We first recall that the Sobolev space Hs(Rd) has the following representation.
Observe that it is well defined also for s /∈ N, and it holds Hdse(Rd) ⊂ Hs(Rd) ⊂
Hbsc(Rd).

Proposition 5.11 (Sobolev spaces). There is the following representation of the Sobolev
space Hs(Rd):

Hs(Rd) :=
{
f ∈ L2(Rd) : f̂(·)(1 + ‖ · ‖2

2)s/2 ∈ L2(Rd)
}

with the inner product

(f, g)Hs(Rd) := (2π)−d/2
∫
Rd
f̂(ω)ĝ(ω)(1 + ‖ω‖2

2)sdω.

Moreover, it holds Hs(Rd) ⊂ C(Rd) if s > d/2.

We have seen in Chapter 3 the construction of the native spaceHK(Ω). In the case
Ω = Rd and K is translational invariant, there is also an alternative definition of this
space, which makes use of the Fourier transform.

Theorem 5.12 (Native spaces via Fourier transform). Assume Φ ∈ L1(Rd) ∩ C(Rd) is a
real valued, strictly positive definite function and let K(x, y) := Φ(x− y) for all x, y ∈ Rd.

Define

G :=

{
f ∈ L2(Rd) ∩ C(Rd) :

f̂√
Φ̂
∈ L2(Rd)

}
and the bilinear form

(f, g)G := (2π)−d/2
∫
Rd

f̂(ω)ĝ(ω)

Φ̂(ω)
dω.

Then G = HK(Rd), in the sense that the sets coincide and (·, ·)G = (·, ·)HK(Rd).
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Proof. We see only a sketch of the proof. The complete one can be found in Theorem
10.12 in [5].

First, observe that the definition is well posed, since Φ SPD implies Φ̂ > 0 (Corol-
lary 5.9).

Moreover, we have from the proof of Corollary 5.9 that Φ̂ ∈ L1(Rd). Since f̂√
Φ̂
∈

L2(Rd) by assumption, we have that also f̂ ∈ L1(Rd) (by Cauchy-Schwarz):

∫
Rd
|f̂(ω)|dω =

∫
Rd

|f̂(ω)|√
Φ̂(ω)

√
Φ̂(ω)dω ≤

(∫
Rd

|f̂(ω)|2

Φ̂(ω)
dω

)1/2(∫
Rd
|Φ̂(ω)|dω

)1/2

<∞.

In particular, from iii of Proposition 5.6 this implies that

f(x) = (2π)−d/2
∫
Rd
f̂(ω)eiω

T xdω for all x ∈ Ω.

The step that we skip is to prove that G with inner product (·, ·)G is a Hilbert space of
functions on Rd.

We only prove the reproducing property. We use the fact that Φ̂ ∈ R ((i) in Propo-
sition 5.7) and that F (f)(x− a) = e−ia

T xf̂(x) ((v) in proposition 5.6):

(f,K(·, x))G := (f,Φ(· − x))G := (2π)−d/2
∫
Rd

f̂(ω)Φ̂(ω − x)

Φ̂(ω)
dω

= (2π)−d/2
∫
Rd

f̂(ω)Φ̂(ω)e−iωT x

Φ̂(ω)
dω = (2π)−d/2

∫
Rd

f̂(ω)Φ̂(ω)eiω
T x

Φ̂(ω)
dω

= (2π)−d/2
∫
Rd
f̂(ω)eiω

T xdω = f(x).

Now, since G with inner product (·, ·)G is a Hilbert space, and since K is the reproduc-
ing kernel with respect to (·, ·)G , it follows that G = HK(Rd) by Theorem 3.6.

We conclude with the following corollary, which is indeed the main result in this
section.

Corollary 5.13 (Sobolev spaces and native spaces). Let Φ ∈ L1(Rd) ∩ C(Rd). Assume
that, for a given s > d/2, there exists constants c1, c2 > 0 such that

c1(1 + ‖ω‖2
2)−s ≤ Φ̂(ω) ≤ c2(1 + ‖ω‖2

2)−s for all ω ∈ Rd. (5.1)

Let K(x, y) = Φ(x− y). Then HK(Rd) is norm equivalent to Hs(Rd), i.e., they are equal as
sets and, for all f ∈ HK(Rd), the norms satisfy

c−1
2 ‖f‖Hs(Rd) ≤ ‖f‖HK(Rd) ≤ c−1

1 ‖f‖Hs(Rd).
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Proof. First, Φ is SPD thanks to Corollary 5.9. Indeed, it is bounded because it is in
L1(Rd) ∩ C(Rd), and Φ̂ > 0 because of the condition (5.1).

Now we prove that f ∈ HK(Rd) if and only if f ∈ Hs(Rd). By Theorem 5.12, we
have f ∈ HK(Rd) if and only if

f ∈ L2(Rd) ∩ C(Rd) and
f̂√
Φ̂
∈ L2(Rd).

By the assumption (5.1), this is true if and only if

f ∈ L2(Rd) ∩ C(Rd) and f̂(·)(1 + ‖ · ‖2
2)s/2 ∈ L2(Rd).

Thanks to Theorem 5.11, this means that f ∈ Hs(Rd) (since s > d/2 implies Hs(Rd) ⊂
C(Rd)).

For all f, g ∈ HK(Rd), we have from Theorem 5.12 that

(f, g)HK(Rd) = (f, g)G := (2π)−d/2
∫
Rd

f̂(ω)ĝ(ω)

Φ̂(ω)
dω.

We can then use the lower bound in condition (5.1) to obtain

(f, g)HK(Rd) = (f, g)G := (2π)−d/2
∫
Rd

f̂(ω)ĝ(ω)

Φ̂(ω)
dω

≤ (2π)−d/2
∫
Rd
f̂(ω)ĝ(ω)c−1

1 (1 + ‖ω‖2
2)sdω

= c−1
1 (f, g)Hs(Rd) ,

using the norm (f, g)Hs(Rd) of Theorem 5.11. The other direction of the norm equiva-
lence works in the same way.

Remark 5.14. Two remarks on this part:

• The result of the corollary can be extended to subsets Ω ⊂ Rd if the boundary of Ω is
regular enough. We don’t consider a formal statement here.

• In the case of RBF kernels, the function Φ is even univariate. This allows to simplify
Bochner Theorem and Corollary 5.9 even further (Theorem 6.18 in [5]).

We conclude this section by showing some examples of functions Φ such that the
kernel is a SPD radial basis function kernel. The shape parameter ε is omitted, but all
the kernels can be defined as K(x, y) := Φ(ε(x − y)). A more complete list of kernels
of this type can be found in Appendix D of [1].

The Matérn kernels are called Sobolev kernels, as their Fourier transform is exactly
of the form of Corollary 5.13, without the need of constants c1, c2.

Instead, in the case of the Gaussian and (Generalized) Inverse Multiquadrics, the
decay of the Fourier transform is faster than any polynomial, so Corollary 5.13 does
not apply.



CHAPTER 5. TRANSLATIONAL INVARIANT AND RBF KERNELS 55

Name Φ Φ̂

Gaussian Φ(x) = e−‖x‖
2
2 Φ̂(ω) = 1√

2
e−‖ω‖

2
2/4

BasicMatérn Φ(x) = e−‖x‖2 Φ̂(ω) = (1 + ‖ω‖2
2)−β

β = d+1
2

Linear Matérn Φ(x) = (1 + ‖x‖2)e−‖x‖2 Φ̂(ω) = (1 + ‖ω‖2
2)−β

β = d+3
2

Quadratic Matérn Φ(x) = (3 + 3‖x‖2 + ‖x‖2
2)e−‖x‖2 Φ̂(ω) = (1 + ‖ω‖2

2)−β

β = d+5
2

Inverse Multiquadrics (IMQ) Φ(x) = 1/
(√

1 + ‖x‖2
2

)
a positive Bessel function

Generalized Inv. Multiq. Φ(x) = (1 + ‖x‖2
2)−β a positive Bessel function

β > 0

5.4 Compactly supported RBF kernels

We discuss now a particular class of RBF kernels, known as Wendland kernels. They
have some special features, which make them very attractive:

• They are RBF kernels, so they can be easily implemented via distance matrices.

• They have compact support, so the kernel matrix can be sparse.

• They are polynomials inside their support, so they are easy to compute and fast
to evaluate.

• They have native spaces which are norm equivalent to Sobolev spaces (of inte-
ger order in odd space dimension).

5.4.1 Remarks on compactly supported kernels

The construction of compactly supported kernels need to consider the following rea-
soning.

• The following can be proven: Assume Φ : [0,∞) → R is continuous and SPD
on every Rd (i.e., K(x, y) := Φ(‖x − y‖2) is SPD for x, y ∈ Rd, for all d). If there
exists r0 ∈ [0,∞) such that Φ(r0) = 0, then Φ = 0.

• This seems to suggest that radial and compactly supported SPD kernels cannot
exist.

• Instead, we have the following: A continuous and compactly supported func-
tion Φ : [0,∞)→ R cannot be SPD on every Rd.
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• Moreover, we have seen in (i) of Proposition 2.7 that if a kernel K is SPD on Ω,
it is also SPD on Ω′ ⊂ Ω. This implies in particular: If Φ : [0,∞) → R is SPD on
Rd, then it is also SPD on all Rd′ , with d′ ≤ d.

• Putting all together: If a continuous and compactly supported function Φ :
[0,∞) → R is SPD on Rd, there exists a maximal d′ such that Φ is SPD on Rd′

for all d ≤ d′, but not on Rd with d > d′.

5.4.2 Wendland kernels

The Wendland kernels satisfy this requirement, and they start by considering the
following function.

Proposition 5.15 (Truncated power). Let l ∈ N. The function Φl : R≥0 → R defined as

Φl(r) := (1− r)l+ :=

{
(1− r)l, if r ≤ 1
0, if r > 1

(5.2)

Is strictly positive definite on Rd if l ≥ bd/2c+ 1 (i.e., the kernel K(x, y) := Φl(‖x− y‖2) is
SPD on Rd).

Proof. Theorem 6.20 in [5].

Remark 5.16. Some comments:

• For l ∈ N, the kernel K(x, y) := Φl(‖x − y‖2) is C0 but not differentiable in x = y
(i.e., in r = 0).

• The goal is to generalize to

Φ(r) =

{
p(r), if r ≤ 1
0, if r > 1,

with p a polynomial of minimal order, in a way such that the kernel is still SPD, the
differentiability is increased, and the evaluation is still fast.

• The idea is to integrate the function Φl in a proper way, by introducing an integral
operator. It will increases the degree of a factor 2. This operation is sometimes called
dimension walk.

The integration operation is defined as follows.

Definition 5.17 (Wendland functions). For a function f : [0,∞) → R such that t →
tf(t) ∈ L1([0,∞)), define

(If)(r) :=

∫ ∞
r

tf(t)dt, r ≥ 0.

Let d ∈ N and define l := bd/2c+ k + 1. Then the Wendland functions are defined as

Φd,k := IkΦl = I(I(. . . (Φl))).
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With this operation, one obtains the Wendland kernels, which indeed satisfy all
the requirements that we are looking for.

Theorem 5.18 (Wendland kernels). For d, k ∈ N, the Wendland kernels are defined as
K(x, y) := Φd,k(‖x− y‖2).

They are SPD on Rd, and K ∈ C2k(Rd × Rd). Moreover, the functions Φd,k have the
representation

Φd,k(r) =

{
pd,k(r), if r ≤ 1
0, if r > 1,

with pd,k a polynomial of degree bd/2c + 3k + 1. Moreover, pd,k are of minimal degree for a
given d and k, and they are unique up to constants.

Proof. Theorem 9.13 in [5].

The explicit form of the polynomials can be easily computed from Definition 5.17.
We see some examples here.

Proposition 5.19 (Explicit form of Wendland kernels). Let d, k ∈ N and l := bd/2c +
k + 1. There exists constants cd,k > 0 such that

Φd,0(r) = (1− r)l+
Φd,1(r) = cd,1 (1− r)l+1

+ [(l + 1)r + 1]

Φd,2(r) = cd,2 (1− r)l+2
+ [(l + 1)(l + 3)r2 + 3(l + 2)r + 3]

Proof. We use Definition 5.17 and Proposition 5.15, i.e., Φd,k := IkΦl.
For k = 0 there is no integration, so Φd,0(r) = Φl(r) for all d.
For k = 1 we consider only r ∈ [0, 1]:

Φd,1(r) := IΦl(r) :=

∫ ∞
r

t(1− t)l+dt =

∫ 1

r

t(1− t)ldt

=

[
−(1− t)l+1((l + 1)t+ 1)

2 + 3l + l2

]t=1

t=r

=
(1− r)l+1((l + 1)r + 1)

2 + 3l + l2
,

while Φd,1(r) = 0 for r > 0, so we get the formula in the statement.
The same for k = 2 and r ∈ [0, 1]:

Φd,2(r) := I2Φl(r) = IΦd,1(r) =

∫ 1

r

t
(1− t)l+1((l + 1)t+ 1)

2 + 3l + l2
dt

=

[
(1− t)l+2((l + 1)(l + 3)t2 + 3(l + 2)t+ 3)

(l + 1)(l + 2)(l + 3)(l + 4)

]t=1

t=r

=
(1− r)l+2((l + 1)(l + 3)r2 + 3(l + 2)r + 3)

(l + 1)(l + 2)(l + 3)(l + 4)
,

while Φd,2(r) = 0 for r > 0, so we get the formula in the statement.
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Finally, these kernels are included in the framework of Section 5.3, so we can char-
acterize their native spaces.

Theorem 5.20 (Native space of Wendland kernels). Let d, k ∈ N, with d ≥ 3 if k = 0.
There exists constants c1, c2 > 0 depending only on d, k such that

c1(1 + ‖ω‖2
2)−d/2−k−1/2 ≤ Φ̂d,k(ω) ≤ c2(1 + ‖ω‖2

2)−d/2−k−1/2 for all ω ∈ Rd.

In particular, the native space on Rd of the Wendland kernel K(x, y) := Φd,k(x− y) is norm
equivalent to the Sobolev space Hd/2+k+1/2(Rd).

Remark 5.21. Observe the following things:

• The exponent is an integer in odd space dimension.

• One can expect a space of smoothness Ck, because of K ∈ C2k (Theorem 3.14). But we
get the additional factor d/2 + 1/2 (in the sense of weak derivatives).

5.5 Error bounds revisited

We now come back to the error bound for interpolation of Theorem 4.21, and give a
refined version in the case of some RBF kernels.

The idea to obtain these refined error estimates is to carefully bound the constant
CK appearing in the error bound, which depends on the derivatives of the kernel.
The hypotheses of the following theorems are exactly the ones of Theorem 4.21, but
we write them again for completeness.

Theorem 5.22 (Convergence order for translational invariant kernels). Let K(x, y) :=
Φ(x− y) be a SPD, translational invariant kernel on Rd.

Assume that Φ ∈ C2k
ν (Rd), i.e., Φ ∈ C2k(Rd) and, for a ∈ Nd

0 with |a| = 2k, DaΦ(x) =
O(‖x‖ν2) for ‖x‖2 → 0.

Let Ω ⊂ Rd be open, bounded, and satisfying a cone condition. Assume that XN ⊂ Ω has
fill distance hN . Let a ∈ Nd

0 with |a| ≤ k.
Then there exists constants C, h0 > 0, independent of x,K, f ∈ HK(Ω), such that if

hN ≤ h0 it holds

|Daf(x)−Dasf (x)| ≤ C h
k+ν/2−|a|
XN

‖f‖HK(Ω) for all x ∈ Ω.

In particular we have the following cases for Wendland, Gaussian and Inverse
Multiquadric kernels.

Theorem 5.23 (Convergence order for Wendland kernels). Let K(x, y) := Φd,k(‖x −
y‖2) be a Wendland kernel with k, d ∈ N.

Let Ω ⊂ Rd be open, bounded, and satisfying a cone condition. Assume that XN ⊂ Ω has
fill distance hN . Let a ∈ Nd

0 with |a| ≤ k.
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Then there exists constants C, h0 > 0, independent of x,K, f ∈ HK(Ω), such that if
hN ≤ h0 it holds

|Daf(x)−Dasf (x)| ≤ C h
k+1/2−|a|
XN

‖f‖HK(Ω) for all x ∈ Ω.

Theorem 5.24 (Convergence order for Gaussian and IMQ kernels). Let K(x, y) :=
Φ(‖x− y‖2) be the Gaussian or Inverse Multiquadric.

Let Ω ⊂ Rd be open, bounded, and satisfying a cone condition. Assume that XN ⊂ Ω has
fill distance hN . Let a ∈ Nd

0.
Then for all l ∈ N with l ≥ |a| there exists constants C(l), h0(l) > 0 such that if hN ≤

h0(l) it holds

|Daf(x)−Dasf (x)| ≤ C(l) h
l−|a|
N ‖f‖HK(Ω) for all x ∈ Ω.

In the case |a| = 0, even spectral convergence holds, i.e., there exists c, C > 0 such that

|f(x)− sf (x)| ≤ C e
− c
hN ‖f‖HK(Ω) for all x ∈ Ω.

Remark 5.25 (Convergence order for Wendland kernels). The convergence rate of Theo-
rem 5.23 are obtained by keeping ε constant, hence the support of the RBF kernel is fixed. This
means that, when the fill distance is reduced, the kernel becomes no more compactly supported,
so the benefits on the computational side are lost. Nevertheless, in practical applications one
usually solves an interpolation problem with a fixed set of interpolation points XN , so the
support can be chosen accordingly.

Remark 5.26 (Quasi-optimal convergence order). In the case of Wendland kernels, the
native space is a Sobolev space Hs(Rd), with s = d/2 + k + 1/2. From the theorem above,
we obtain convergence of order γ := k + 1/2 for |a| = 0. This means convergence of order
γ = s− d/2.

We have seen that, to have a fill distance hN , we need to consider N = O(h
−1/d
N ) points.

A sequence of sets {XN}N∈N such that hN ≤ cN−1/d for all N ∈ N is called asymptotically
uniform (so, very well distributed).

In this case, substituting in the error bound this hN , we obtain an order of convergence

hγXN = h
s−d/2
XN

≤ c′N−
s
d

+ 1
2 .

Here, it is evident that the convergence order is dimension-dependent. But also, it is difficult
to do more than this: It can be proven that in a Sobolev space Hs(Rd), the best possible
convergence (using any method, not necessarily kernels) is of order N−s/d.



6. Algorithms for kernel interpolation

We have seen so far that kernel interpolation is well defined in arbitrary space dimen-
sion and using arbitrary pairwise distinct interpolation points. Moreover, we have
studied error analysis in the case the target function comes from the native space of
the kernel, and that such space can be closely related to certain Sobolev spaces in
some cases.

The goal of this part is to present some algorithms that allow to compute the kernel
interpolant (or an approximant) in an efficient and stable way. They will make use of
the theory of Reproducing Kernel Hilbert Spaces that we have studied in the previous
chapters, but they all results in actual algorithms that can be implemented. Some
comments:

• This is a selection of possible algorithms. Many others exist, but the following
ones present a reasonable set of ideas that can be found also in other methods.

• The following methods all have advantages and disadvantages, which will be
discussed. In general, when choosing a particular method, one should think to
use the method that better fits the particular application.

• All the methods avoid the solution of the linear system Aα = b.

• Regularized interpolation considers weaker interpolation conditions and im-
proves the condition number of the kernel matrix.

• Partition of Unity method divides the interpolation problem on Ω into several
interpolation problems on subsets {Ω(i)}Mi=1, and then combines the resulting
interpolants.

• Greedy kernel interpolation selects a small subset Xn ⊂ XN of the interpolation
points and solve the interpolation problem restricted to Xn.

6.1 General considerations

We first see two tools that are very useful in practice, and which are independent of
the particular method.

6.1.1 Train/validation/test sets

In many methods the approximation depends on some parameters, which need to be
chosen to obtain good results. An example is the shape parameter ε > 0 in a RBF

60
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kernel, but also other parameters can be present. Moreover, there is the need to test
the quality of the approximant.

In practical applications, the target function f is unknown, so it cannot be used
to check if the approximation is good. All we know is the set of interpolation points
XN ⊂ Ω and the corresponding data values, which we denote here as FN := {fi}Ni=1.
In this case, the most common approach is to split the sets into train, validation and
test sets.

This means the following: first permute the two sets XN , FN , then fix numbers
Ntr, Nval, Nte such that N = Ntr +Nval +Nte, and define a partition of XN , FN as

Xtr := {xi, 1 ≤ i ≤ Ntr} Ftr := {fi, 1 ≤ i ≤ Ntr}
Xval := {xi, Ntr + 1 ≤ i ≤ Ntr +Nval} Fval := {fi, Ntr + 1 ≤ i ≤ Ntr +Nval}
Xte := {xi, Ntr +Nval + 1 ≤ i ≤ N} Fte := {fi, Ntr +Nval + 1 ≤ i ≤ N}.

The idea is to use the validation set Xval to validate (i.e., choose) the parameters,
and the test set Xte to test the error. Having disjoint sets allows to have a fair way to
test the algorithm.

For the process, we also need an error function that returns the error of the in-
terpolant sf evaluated on a generic set of points X := {xi}i w.r.t. the exact values
F := {fi}i. We denote as |X| the number of elements of X . Examples are the maximal
error and the Root Mean Square Error (RMSE) defined as

E (sf , X, F ) := max
1≤i≤|X|

|sf (xi)− fi|, E (sf , X, F ) :=

√√√√ 1

|X|

|X|∑
i=1

(sf (xi)− fi)2.

Then, one decides a set of possible parameters {ε1, . . . , εNε} that has to be checked.
A common choice is to take them logarithmically equally spaced, since the correct
scale is not known in advance, in general.

The training and validation process is described in Algorithm 1. We denote as
sf (εi) the interpolant obtained with parameter εi.

Algorithm 1 Validation and test
1: Input: Xtr, Xval, Xte,Ftr, Fval, Fte, {ε1, . . . , εNε}
2: for i = 1, . . . , Nε do
3: Compute interpolant sf (εi) with data (Xtr, Ftr)
4: Compute error ei := E(sf (εi), Xval, Fval)
5: end for
6: Choose parameter ε̄ := arg min ei
7: Compute interpolant sf (ε̄) with data (Xtr ∪Xval, Ftr ∪ Fval)
8: Compute error ē = E(sf (ε̄), Xte, Fte)
9: Output: interpolant sf (ε̄), optimal parameter ε̄, test error ē

A more advanced way to realize the same idea is k-fold cross validation. To have
an even better selection of the parameters, one can repeat the validation step (lines
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2-6 in the previous algorithm) by changing the validation set at each step. To do so,
we don’t select a validation set (so N = Ntr +Nte), and instead consider a partition of
Xtr, Ftr into k ∈ {1, . . . , N} disjoint subsets, all approximately of the same size:

Xtr := {xi, 1 ≤ i ≤ Ntr} := ∪ki=1Xi Ftr := {fi, 1 ≤ i ≤ Ntr} := ∪ki=1Fi
Xte := {xi, Ntr + 1 ≤ i ≤ Ntr +Nte} Fte := {fi, Ntr + 1 ≤ i ≤ Ntr +Nte}

In the validation step, each of the the Xi is used as a validation set, and the validation
is repeated for all i. The error ei for the parameter εi is then defined as the average
error over all these permutations, as described in Algorithm 2.

In the case k = N , k-fold cross validation is called Leave One Out Cross Validation
(LOOCV).

Algorithm 2 k-fold cross validation and test
1: Input: Xtr = ∪ki=1Xi, Xte, Ftr = ∪ki=1Fi, Fte, {ε1, . . . , εNε}
2: for i = 1, . . . , Nε do
3: for j = 1, . . . , k do
4: Compute interpolant sf (εi) with data (∪i 6=jXi,∪i 6=jFi)
5: Compute error e(j) := E(sf (εi), Xj, Fj)
6: end for
7: ei := mean{e(j), 1 ≤ j ≤ k}
8: end for
9: Choose parameter ε̄ := arg min ei

10: Compute interpolant sf (ε̄) with data (Xtr, Ftr)
11: Compute error ē = E(sf (ε̄), Xte, Fte)
12: Output: interpolant sf (ε̄), optimal parameter ε̄, test error ē

6.1.2 Vector valued functions

A second thing that can be applied to all the methods is the following. We have
seen so far how to approximate functions f : Ω ⊂ Rd → R. It is easy (at least in
the computational sense) to extend the process to the approximation of vector-valued
functions f : Ω ⊂ Rd → Rq, q ≥ 1.

We still consider parwise distinct data points XN ⊂ Ω, but in this case the data
values are vectors f(xi) ∈ Rq. It is still possible to construct an interpolant of the form

sf (x) =
N∑
j=1

αjK(x, xj), x ∈ Ω,

but now considering coefficient vectors αj ∈ Rq. Imposing the interpolation condi-
tions results in a linear system Aα = b, where A is still the same kernel matrix, but
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instead α and b are N × q matrices defined as

α :=


...
αTj
...

 ∈ RN×q, b :=


...

f(xi)
T

...

 ∈ RN×q.

The existence of a unique solution is still guaranteed by the fact that A is a positive
definite matrix.

This is a very simple way to deal with vector-valued functions. It is an instance
of the use of matrix-valued kernels, which are a generalization of the kernels that we
have seen so far. A large part of the theory can be extended also to cover this case.

6.2 Regularized interpolation

Some ideas:

• The interpolant is obtained by requiring that sf (xi) = fi, 1 ≤ i ≤ N . But we
have seen that the resulting linear system can be very ill-conditioned.

• Moreover, if the data are affected by noise, i.e., fi = f(xi) + η, it makes no sense
to require exact interpolation.

• The interpolation conditions can be written also as the minimization of the
quantity

∑N
i=1 (fi − sf (xi))2. The idea is to relax this condition, in the sense

that we still require this quantity to be small, but we add a term that penalizes
solutions with large norm.

• Also in this case, the solution can be found by solving a linear system, which
will be better conditioned than the usual one.

We give the following definition.

Definition 6.1 (Regularized interpolant). Let Ω be a nonempty set, K a PD kernel on
Ω × Ω. Let XN ⊂ Ω be pairwise distinct, {fi = f(xi)}Ni=1 ⊂ R, and let λ ≥ 0 be a regular-
ization parameter.

A regularized interpolant sλf is a solution of

sλf (·) := arg min
s∈HK(Ω)

[
N∑
i=1

(fi − s(xi))2 + λ‖s‖2
HK(Ω)

]
.

The following theorem characterizes exactly the solution(s) of this problem.

Theorem 6.2 (Representer Theorem). In the setting of Definition 6.1 and if f ∈ HK(Ω),
there exists a regularized interpolant (i.e., a solution of the minimization problem) of the form

sλf (·) =
N∑
j=1

αjK(·, xj),
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where the vector of coefficients α ∈ RN is a solution of the linear system

(A+ λI)α = b, bi = f(xi). (6.1)

Moreover, if K is SPD this is the unique solution of the minimization problem

Proof. Define the functional J : HK(Ω)→ R

J(s) :=
N∑
i=1

(fi − s(xi))2 + λ‖s‖2
HK(Ω).

We first prove that for every s ∈ HK(Ω) there exists g ∈ V (XN) such that J(g) ≤ J(s).
To see this, using Corollary (4.2) we write s ∈ HK(Ω) as

s = g + g⊥, g ∈ V (XN), g⊥ ∈ V (XN)⊥,

where g⊥(xi) = 0 for all xi ∈ XN , so s(xi) = g(xi) + g⊥(xi) = g(xi), and ‖s‖2
HK(Ω) =

‖g‖2
HK(Ω) + ‖g⊥‖2

HK(Ω). So we can obtain the following (since λ ≥ 0):

J(g) =
N∑
i=1

(fi − g(xi))
2 + λ‖g‖2

HK(Ω) =
N∑
i=1

(fi − s(xi))2 + λ‖g‖2
HK(Ω)

=
N∑
i=1

(fi − s(xi))2 + λ‖s‖2
HK(Ω) − λ‖g⊥‖2

HK(Ω) = J(s)− λ‖g⊥‖2
HK(Ω) ≤ J(s).

So we can restrict the minimization over V (XN), i.e., consider only functions

s :=
N∑
j=1

αjK(·, xj),

for some unknown α ∈ RN . For these functions it holds

s(xi) =
N∑
j=1

αjK(xi, xj) = (Aα)i and ‖s‖2
HK(Ω) =

N∑
i,j=1

αiαjK(xi, xj) = αTAα.

This means that the functional J depends only on α ∈ RN and can be written as

J(α) = ‖Aα− b‖2
2 + λαTAα = (Aα− b)T (Aα− b) + λαTAα

= αTATAα− 2αTAT b+ bT b+ λαTAα.

We can minimize it by solving a finite dimensional optimization problem. Indeed, its
derivative w.r.t. α is (A is symmetric)

dα(J(α)) = 2ATAα− 2AT b+ 2λAα = 2A(Aα− b+ λα),

so dα(J(α)) = 0 if and only if

A (A+ λI)α = Ab,

which is satisfied by α such that (A+ λI)α = b (also for PD kernels). If K is SPD then
A is invertible, so this is the only solution.
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Remark 6.3. Some comments on this result:

• This is a generalization of interpolation, in the sense that for λ = 0 we obtain exact
interpolation when K is SPD.

• On the other hand, the parameter λ ≥ 0 improves the condition number of the linear
system, and thus the stability of the solution. Indeed, the condition number of A + λI
is

κ(λ) :=
λmin(A+ λI)

λmax(A+ λI)
=
λmin(A) + λ

λmax(A) + λ

and this is a strictly decreasing function of λ, with κ(0) = κ(A) and limλ→∞ κ(λ) = 1.

• Regularized interpolation with λ > 0 allows to solve approximation problems also with
PD kernels. Indeed, the matrix 6.1 is invertible since the minimal eigenvalue is

λmin(A) + λ ≥ λ > 0

since by Remark 2.4 λmin(A) ≥ 0 for K PD.

• From the proof it follows also that J(sλf ) ≤ J(f). So in this sense regularized interpola-
tion is a form of unrestricted best approximation, in the same spirit of the discussion in
Section 4.1. Indeed, we removed both the requirement sλf ∈ V (XN) (which we obtain
back from the Representer Theorem) and sλf (xi) = f(xi).

• The parameter λ is usually also chosen via k-fold cross validation.

• Especially in the Engineering / applied sciences literature, kernel approximation is gen-
erally referred exactly to this method. In particular, if interpolation (λ = 0) is a better
solution, it is selected by a proper cross validation.

• On the other hand, this method does not reduce the size of the linear system to be solved,
so one should consider to do something else, or in addition, in the case N is very large.

• The functional J can be written as the sum of a risk functional L (the term with the
squared error) and a regularization functional R (the term with the squared norm). It is
possible to define other regularized approximant by changing these functionals, and the
Representer Theorem applies to a wide class of them (see Chapters 3,4 of [3]). Each pair
of functionals results in a different way to determine the coefficients α (like 6.1 here).

• The idea of computing an approximant by minimizing a weighted sum of a regular-
ization and loss functional is used in many other fields, and usually is referred to as
Tikhonov regularization (see e.g. lectures on Inverse Problems). In particular, the regu-
larization functionals can be defined to enforce particular structure in the approximant
(for example total variation minimization for image reconstruction).

• There is a Demo in ILIAS demonstrating the behavior of the method.
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6.3 Partition of unity method

Some ideas:

• When the number N of points is large, it is difficult to solve the full linear sys-
tem. Also just storing the full matrix can be very expensive.

• In many cases, the target function f can have local features, so it could be not a
good idea to compute a global solution.

• The idea of the Partition of Unity Method (PUM) is to divide the interpolation
problem over Ω into several smaller problems defined on local domains Ω(j),
1 ≤ j ≤ M . On each Ω(j), one considers only the interpolation points Xj :=
XN ∩ Ω(j) and solves the associated interpolation problem. The global solution
is then obtained by combining the local solutions.

• The straightforward approach of just dividing Ω into disjoint sets would fail, as
the global approximant would be in general discontinuous (Figure 6.1).

Figure 6.1: A wrong approach to PUM.

The method works as follows. First, we consider an open covering of Ω.

Definition 6.4 (Open covering of Ω). Let Ω ⊂ Rd. A collection of sets
{

Ω(j)
}M
j=1

, M ∈ N,
is an open covering of Ω if

i) The Ω(j) are open,

ii) They form a covering of Ω, i.e., Ω ⊂
⋃M
j=1 Ω(j),

iii) They are partially overlapping, i.e., for all 1 ≤ j ≤M , Ω(j) ∩
(⋃

i 6=j Ω(j)
)
6= ∅.

Based on the covering, we can define local weight functions. These weights are
chosen to be a partition of unity in the following sense.

Definition 6.5 (Partition of unity). A set of continuous functions wj : Ω → R, 1 ≤ j ≤
M ,M ∈ N, is a partition of unity w.r.t. the covering

{
Ω(j)

}M
j=1

if
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i) wj(x) ≥ 0 for all x ∈ Ω,

ii) supp(wj) ⊂ Ω(j) (in particular, for all x ∈ Ω only a small number of wj(x) is nonzero),

iii)
∑M

j=1 wj(x) = 1 for all x ∈ Ω.

With an open covering and a partition of unity we can properly define the PUM-
interpolant.

Definition 6.6 (PUM-interpolant). Let Ω ⊂ Rd, and consider pairwise distinct data points
XN ⊂ Ω and data values {f(xi)}Ni=1 ⊂ R. Let K be a SPD kernel on Ω.

For M ∈ N, consider an open covering
{

Ω(j)
}M
j=1

of Ω and a partition of unity {wj}Mj=1

w.r.t. the covering.
For 1 ≤ j ≤ M , define Xj := XN ∩ Ω(j) and denote as s(j)

f the local interpolant, i.e., the
kernel interpolant with data points Xj and data values {f(xi), xi ∈ Xj}.

Then the PUM- interpolant is defined as

sf (x) :=
M∑
j=1

wj(x)s
(j)
f (x) for all x ∈ Ω. (6.2)

We now can prove that this way of defining the interpolant works well, in the
sense that the PUM-interpolant satisfies the interpolation conditions and it is a smooth
function.

Proposition 6.7 (Properties of PUM-interpolant). The PUM-interpolant sf is a global
interpolant of f on the points XN , i.e.,

sf (xi) = f(xi) for all xi ∈ XN .

Moreover, if k.m ∈ N, K ∈ Ck(Ω× Ω) and wj ∈ Cm(Ω) for all 1 ≤ j ≤M , we have

sf ∈ Cmin(k,m)(Ω).

Proof. We first compute the value of sf (xi) for xi ∈ XN . Using Definition 6.6 we have

sf (xi) =
M∑
j=1

wj(xi)s
(j)
f (xi).

Then using (ii) of Definition 6.5 we can restrict the sum over j : xi ∈ Ω(j), and for
these j we have by Definition 6.6 that s(j)

f (xi) = f(xi). So we can conclude that

sf (xi) =
M∑
j=1

wj(xi)s
(j)
f (xi) =

∑
j:xi∈Ω(j)

wj(xi)s
(j)
f (xi) =

∑
j:xi∈Ω(j)

wj(xi)f(xi)

= f(xi)
M∑
j=1

wj(xi) = f(xi),
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where we used in the last step the fact that
∑M

j=1wj(x) = 1 (by (iii) of Proposition 6.5).
Now, since s(j)

f is a finite linear combination of K, and K ∈ Ck(Ω × Ω), we have
that s(j)

f ∈ Ck(Ω).
Since we assumed that wj ∈ Cm(Ω), it follows by the definition (6.2) of PUM-

interpolant that sf ∈ Cmin(k,m)(Ω).

The most common way to obtain an open covering and a partition of unity is as
follows:

• Ω(j): Consider points {cj}Mj=1 ⊂ Ω on a regular grid and a radius r > 0. Define
Ω(j) := B(cj, r) (open ball). If r is large enough, it holds Ω ⊂ ∪Mj=1Ω(j) and the
local domains are overlapping.

• wj : For some k ∈ N, consider the Wendland kernel W (x, y) := Φd,k(‖x − y‖2/r)
(we use the notation W to distinguish it from the kernel used to compute the
interpolant). Define for all 1 ≤ j ≤M

wj(x) :=
W (x, cj)∑M
i=1W (x, ci)

.

These wj satisfy all the requirements of Definition 6.5:

i) wj is non negative and continuous, by definition of Wendland kernels.

ii) The support of wj is the ball of center cj and radius r, i.e., Ω(j), by definition
of Wendland kernels.

iii) For all x ∈ Ω, by construction
∑M

j=1 wj(x) =
∑M

j=1
W (x,cj)∑M
i=1 W (x,ci)

= 1.

Moreover, this partition satisfies wj ∈ C2k(Ω), as we have seen in Theorem 5.18.

Remark 6.8. Some comments on this method:

• The computation of the local interpolants can be performed in parallel, so the construc-
tion of the PUM interpolant is potentially very efficient.

• When the PUM interpolant is evaluated in a new point x ∈ Ω, only a small num-
ber of terms in the sum (6.2) are non zero, so also the evaluation of the interpolant is
potentially very efficient.

• To have a good efficiency it is fundamental to have a fast way to decide, for a given point
x ∈ Ω, what are the subdomains such that x ∈ Ω(j). In this way the evaluation can
really involve only the evaluation of the desired local interpolants. To do so, usually
special data structures are used to organize the centers cj of the covering.

• Nevertheless, the approach that we have seen requires to consider a number of local

domains of radius r of the order M = O
((

diam(Ω)
r

)d)
, so the method is rarely used in

high dimensions.
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• Under further assumptions on
{

Ω(j)
}M
j=1

and {wj}Mj=1, it can be proven that the PUM
interpolant has exactly the same convergence order of standard interpolation (i.e. Theo-
rem 5.22 holds with different constants). These additional assumptions are satisfied by
the particular constructions based on balls and Wendland kernels. The theorem is stated
below, without proof. The assumptions are quite technical, but the idea is to guarantee
that all the sets Ω(j) are regular, in the sense that they satisfy a cone condition indepen-
dently of j, and that the functions wj have bounded derivatives, again independently of
j.

• There is a Demo in ILIAS demonstrating the behavior of the method.

Theorem 6.9 (Convergence order of PUM interpolation). Let K(x, y) := Φ(x− y) be a
SPD, translational invariant kernel on Rd.

Assume that Φ ∈ C2k
ν (Rd), i.e., Φ ∈ C2k(Rd) and, for a ∈ Nd

0 with |a| = 2k, DaΦ(x) =
O(‖x‖ν2) for ‖x‖2 → 0.

Let Ω ⊂ Rd be open and bounded and let XN ⊂ Ω be pairwise distinct. Let {Ω(j)}Mj=1

be a open covering of Ω which is regular for (Ω, XN), i.e., additionally to the requirements of
Definition 6.4, assume that

• For each x ∈ Ω, the number of sets Ω(j) such that x ∈ Ω(j) is bounded by a constant
CΩ.

• There exist a constant Cr > 0 and an angle θ ∈ (0, π/2) such that for each 1 ≤ j ≤M ,
Ω(j) ∩ Ω satisfies a cone condition with angle θ ∈ (0, π/2) and radius r = CrhXN ,Ω.

Moreover, let {wj}Mj=1 be a partition of unity which is k-stable for {Ω(j)}Mj=1, i.e., additionally
to the requirements of Definition 6.5, assume that

• for every a ∈ Nd
0 with |a| ≤ k there exists a constant Cα > 0 such that, for all 1 ≤ j ≤

M , it holds
‖Dawj‖L∞(Ω(j)) ≤ Cα diam

(
Ω(j)

)−|a|
Then there exists constants C, h0 > 0, independent of x,K, f ∈ HK(Ω), such that for all
a ∈ Nd

0 with |a| ≤ k it holds

|Daf(x)−Dasf (x)| ≤ C h
k+ν/2−|a|
XN

‖f‖HK(Ω) for all x ∈ Ω,

where sf is the PUM-interpolant of f .

Proof. See Theorem 15.19 in [5].

6.4 Greedy kernel interpolation

Some ideas:
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• We have seen that the full kernel matrix is in general ill-conditioned. This sug-
gests that a good idea could be to select a small submatrix that approximates A
in some sense, and solve only the reduced linear system. Selecting a submatrix
of A means to select a subset of interpolation points.

• On the other hand, it is interesting to find a small subset of interpolation points
Xn such that the interpolation error is small. This could be applied in theory to
select good points from Ω, or in practice to select good points from a set XN of
given data.

• This selection is in general very expensive, also in the case the points Xn are
selected from a finite set XN , n ≤ N . Indeed, finding the optimal choice of
points is a combinatorial problem, which has a very large computational cost.

• The idea of greedy algorithms is to perform this selection incrementally, i.e.,
adding one point at a time. Instead of optimizing the full selection ofXn, at each
iteration only the “best new point” is selected, based on some error indicator.

• The resulting interpolant, based only on the set Xn, has the great advantage to
be fast to evaluate, because it is defined by a linear combination of only n (in-
stead of N ) terms. This is particularly useful if the interpolant needs to be eval-
uated multiple times, e.g. to obtain predictions of the values of the unknown
function f .

The general structure of the algorithm is as follows. For the moment, we consider
a generic selection rule µ : Ω → R, i.e., an error indicator that tells us what point to
select. We will be more specific later, and define different selection rules. To make
explicit the dependence of the interpolant on the current set Xn, we denote as sn,
instead of sf , the interpolant based on the points Xn.

Definition 6.10 (Kernel greedy interpolation). Let Ω ⊂ Rd and K be a SPD kernel on Ω.
Let f ∈ HK(Ω).

Define X0 := ∅, V (X0) := {0}, s0 := 0, and, for n ≥ 1,

• Select xn := arg max
x∈Ω\Xn−1

η(x)

• Define Xn := Xn−1 ∪ {xn} and V (Xn) := span {K(·, xi), xi ∈ Xn}

• Compute sn := ΠV (Xn)(f).

The algorithm is terminated when η(xn) ≤ τ , for τ a given tolerance.

Remark 6.11. Two comments:

• It could be that the maximizer of η is not unique. In this case only one of the multiple
points is selected and included in Xn.
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• In practical implementations, the new point is selected from a large set of points XN ,
not from Ω. This means that the first step is replaced by

xn := arg max
x∈XN\Xn−1

η(x).

6.4.1 The Newton basis

Before seeing how to select a “good” new point, i.e., how to define η, we see how to
perform the computation of the interpolant efficiently.

The problematic point is that the interpolants on Xn and Xn−1 are defined as

sn−1(·) =
n−1∑
j=1

α
(n−1)
j K(·, xj), sn(·) =

n∑
j=1

α
(n)
j K(·, xj),

where the coefficients are the solution of two different linear systems, involving the
kernel matrix on Xn−1 and on Xn. Thus, in general, α(n−1)

j 6= α
(n)
j for all 1 ≤ j ≤ n− 1.

This means that all the coefficients need to be recomputed when adding a new point.
A solution to avoid the full recomputation is to use a different basis of V (Xn),

which is called Newton basis. The name comes from the analogy with the Newton
basis of polynomial interpolation. In this case, if we have two sets Xn−1 ⊂ Xn ⊂ [a, b]
and consider the two interpolants e.g. in monomial form, we have also in this case
that all the coefficients are in general different, i.e.,

pn−1(x) =
n−1∑
j=1

α
(n−1)
j xj−1, pn(x) =

n∑
j=1

α
(n)
j xj−1.

Instead, one can consider the polynomial Newton basis on Xn defined as

vj(x) :=

j−1∏
i=1

(x− xi) 1 ≤ j ≤ n

and the resulting interpolant can be written as

pn−1(x) =
n−1∑
j=1

cjvj(x), pn(x) =
n∑
j=1

cjvj(x) = pn−1(x) + cnvn(x),

where now the coefficients c1, . . . , cn−1 does not change when adding a new point,
and only the new basis element vn and the coefficient cn are computed. This is due
to the fact that vn(xi) = 0 for 1 ≤ i < n, so the interpolation conditions on the points
Xn−1 are not changed by adding vn in the linear combination.

There exists an analogous for kernel interpolation.
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Definition 6.12 (Newton basis). Let XN ⊂ Ω be pairwise distinct. The Newton basis
{vj}Nj=1 of V (XN) is defined as the Gram-Schmidt orthonormalization of {K(·, xi)}Ni=1, i.e.,

v1(x) :=
K(x, x1)

‖K(·, x1)‖HK(Ω)

=
K(x, x1)√
K(x1, x1)

ṽn(x) := K(x, xn)−
n−1∑
j=1

(K(·, xn), vj)HK(Ω) vj(x) = K(x, xn)−
n−1∑
j=1

vj(xn)vj(x)

vn(x) :=
ṽn(x)

‖ṽn‖HK(Ω)

, 1 < n ≤ N.

Remark 6.13. As is clear from the definition, the Newton basis is dependent of the ordering
of the points in XN (because the Gram-Schmidt procedure is). This will not be a problem in
greedy algorithms, as the order of the points will be determined by the selection procedure.

This basis is indeed what we are looking for.

Proposition 6.14 (Properties of the Newton basis). Let XN ⊂ Ω and {vj}Nj=1 be the
corresponding Newton basis. Then it holds:

i) The Newton basis is an orthonormal basis of V (XN) .

ii) It is nested, i.e., for all 1 < n ≤ N ,

V (Xn−1) = span {v1, . . . , vn−1} , V (Xn) = span {v1, . . . , vn} .

iii) For all 1 < n ≤ N it holds vn ∈ V (Xn−1)⊥ so vn(xi) = 0 for all 1 ≤ i < n.

iv) vn(xn) = PXn−1(xn) for all 1 < n ≤ N .

Proof. We have the following:

(i) The basis is constructed via a Gram-Schmidt procedure, so it is orthonormal, i.e.,
for all 1 ≤ i, j ≤ N it holds

(vi, vj)HK(Ω) = δij.

(ii) This also follows from the Gram-Schmidt construction. It can also be seen by
induction since clearly

v1 =
K(x, x1)√
K(x1, x1)

∈ V (X1)

and, if {vj}n−1
j=1 ∈ V (Xn−1), we have also by definition

ṽn(x) := K(x, xn)−
n−1∑
j=1

vj(xn)vj(x) ∈ V (Xn),

so the basis is nested.
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(iii) Since (vn, vj)HK(Ω) = δnj from (i), and span {v1, . . . , vn−1} = V (Xn−1) from (ii),
we have vn ∈ V (Xn−1)⊥. So vn(xi) = 0 for 1 ≤ i < n from Corollary 4.2.

(iv) This part requires the knowledge of the fact that

PXn−1(x)2 = K(x, x)−
n−1∑
j=1

vj(x)2,

which holds for a general orthonormal basis (as the Newton basis is), and which
will be proven in the next Proposition.

We start by computing ṽn(xn) using the definition:

ṽn(xn) = K(xn, xn)−
n−1∑
j=1

vj(xn)vj(xn) = PXn−1(xn)2.

Then, again using the definition of ṽn, we have

‖ṽn‖2 = (ṽn, ṽn)HK(Ω)

=

(
K(·, xn)−

n−1∑
j=1

vj(xn)vj, K(·, xn)−
n−1∑
i=1

vi(xn)vi

)
HK(Ω)

= K(xn, xn)− 2
n−1∑
j=1

vj(xn)(K(·, xn), vj)HK(Ω) +
n−1∑
i,j=1

vi(xn)vj(xn)(vi, vj)HK(Ω)

= K(xn, xn)− 2
n−1∑
j=1

vj(xn)2 +
n−1∑
j=1

vi(xn)vj(xn)δij

= PXn−1(xn)2.

So vn := ṽn
‖ṽn‖HK (Ω)

= PXn−1(xn).

6.4.2 Interpolation with the Newton basis

As we did for the interpolant sn, to simplify the notation we use in the following
the notation Pn := PXn for the power function on Xn, assuming to have a sequence
∅ =: X0 ⊂ . . . Xn ⊂ . . . XN .

The following result applies to one single set Xn and to a general orthonormal
basis of V (Xn).

Proposition 6.15 (Interpolation with orthonormal bases). Let Xn ⊂ Ω be pairwise dis-
tinct and consider the subspace V (Xn) ⊂ HK(Ω). Let {vj}nj=1 be an orthonormal basis of
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V (Xn), i.e., (vi, vj)HK(Ω) = δij . Let f ∈ HK(Ω). Then, the interpolant sn on Xn with data
{f(xi)}ni=1 can be computed as

sn(x) =
n∑
j=1

(f, vj)HK(Ω)vj(x), (6.3)

and the power function of Xn as

Pn(x)2 = K(x, x)−
n∑
j=1

vj(x)2.

Proof. From Proposition 4.1 we know that the interpolant with points Xn is the or-
thogonal projection into V (Xn). Since {vj}Nj=1 is an o.n.b. of V (Xn) (Proposition 6.14),
it follows that

sn(x) =
n∑
j=1

(f, vj)HK(Ω)vj(x).

Moreover, defining fx := K(·, x), we know from (i) of Proposition 4.12 that

Pn(x) := PXn(x) = ‖fx − sfx(·)‖HK(Ω) .

Using the form (6.3) and the reproducing property we can compute

sfx(·) =
n∑
j=1

(fx, vj)HK(Ω)vj(·) =
n∑
j=1

(K(·, x), vj)HK(Ω) vj(·) =
n∑
j=1

vj(x)vj(·).

It follows that

Pn(x)2 = ‖fx − sfx(·)‖
2
HK(Ω) =

∥∥∥∥∥K(·, x)−
n∑
j=1

vj(x)vj(·)

∥∥∥∥∥
2

HK(Ω)

=

(
K(·, x)−

n∑
j=1

vj(x)vj(·), K(·, x)−
n∑
i=1

vi(x)vi(·)

)2

HK(Ω)

= K(x, x)− 2
n∑
j=1

vj(x)(vj, K(·, x))HK(Ω) +
n∑

i,j=1

vi(x)vj(x)(vi, vj)HK(Ω)

= K(x, x)−
n∑
j=1

vj(x)2.

Now we can finally see that, using the Newton basis, we can add a new point
and update the interpolant without recomputing all the coefficients, but only adding
a new basis element and computing a new coefficient, exactly as in the polynomial
case.
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Proposition 6.16 (Iterative interpolation with the Newton basis). Let f ∈ HK(Ω), ∅ =:
X0 ⊂ . . . Xn ⊂ . . . XN ⊂ Ω. For all n ≥ 1, define the residual as

r0 := f, rn := f − sn.

Then

i) We have the update formulas

sn(x) =
n∑
j=1

(f, vj)HK(Ω)vj(x) = sn−1(x) + (f, vn)HK(Ω)vn(x)

Pn(x)2 = K(x, x)−
n∑
j=1

vj(x)2 = Pn−1(x)2 − vn(x)2

rn(x) = rn−1(x)− (f, vn)HK(Ω)vn(x).

ii) For the coefficient of the basis vn, it holds (f, vn)HK(Ω) := rn−1(xn)
Pn−1(xn)

.

In particular, all the updates can be obtained efficiently by reusing previously computed quan-
tities.

Proof. (i) We show the result for sn, and the others are completely analogous. From
Proposition 6.14, we have that the Newton basis {vj}n−1

j=1 is an orthonormal basis
of V (Xn−1) and {vj}nj=1 is an orthonormal basis of V (Xn). Then we can use
Proposition 6.15 to obtain

sn−1(x) =
n−1∑
j=1

(f, vj)HK(Ω)vj(x)

sn(x) =
n∑
j=1

(f, vj)HK(Ω)vj(x),

thus

sn(x) = sn−1(x) + (f, vn)HK(Ω)vn(x).

(ii) From definition 6.12 we have

(f, vn) =

(
f,

ṽn
‖ṽn‖HK(Ω)

)
HK(Ω)

=
1

‖ṽn‖HK(Ω)

(f, ṽn)HK(Ω) ,

where

ṽn(x) = K(x, xn)−
n−1∑
j=1

vj(xn)vj(x).
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We proved in the proof of Proposition 6.14 that ‖ṽn‖HK(Ω) = Pn−1(xn). So we are
done if we prove that (f, ṽn)HK(Ω) = rn−1(xn). Using the definition of ṽn, rn−1,
the reproducing property and the formula for sn, we have

(f, ṽn)HK(Ω) =

(
f,K(·, xn)−

n−1∑
j=1

vj(xn)vj

)
HK(Ω)

= f(xn)−
n−1∑
j=1

vj(xn)(f, vj)HK(Ω)

= f(xn)− sn−1(xn)

= rn−1(xn).

6.4.3 Selection rules and error

We can now formulate more precisely the selection rules/error indicators η used in
the algorithm. Each one leads to a different approximant (since the interpolation
points are different) and so the error analysis will be different.

Definition 6.17 (Selection rules). We have the following selection rules

• P -greedy: xn := arg max
xn∈Ω\Xn−1

Pn−1(x)

• f -greedy: xn := arg max
xn∈Ω\Xn−1

|rn−1(x)|

• f/P -greedy: xn := arg max
xn∈Ω\Xn−1

|rn−1(x)|
Pn−1(x)

Remark 6.18. Some comments

• Recall that in practical implementation, the selection is only over a large but finite set
XN , not all Ω.

• They are all well defined rules, and we have seen how to efficiently compute the quan-
tities to be maximized (i.e., Pn, rn). Moreover, Pn−1(x) 6= 0 if x /∈ Xn−1 (Proposition
4.13). This motivates the restriction of the selection on Ω \Xn−1.

• When adding a new point xn, the first two error indicators at the next iteration satisfy
η(xn) = 0. Indeed, PXn(xn) = 0 since xn ∈ Xn (Proposition 4.13) and rn(xn) =
f(xn)− sn(xn) = 0 since sn is the interpolant of f on Xn. The third one is “0/0”, but
we excluded in the definition to select xn from Xn−1.
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• The motivation for the first two selections is clear: they try to put to 0 an upper bound
on the error (P -greedy) or the maximal error itself (f -greedy). The third one is unclear
at the moment, but we see in the next Proposition that it is indeed locally optimal, i.e.,
it guarantees the maximal reduction of the error.

Proposition 6.19 (Convergence of greedy interpolation). For n ∈ N, let Xn ⊂ Ω be the
sequence of points selected by the greedy algorithm with any of the selection rules of Definition
6.17. Let f ∈ HK(Ω) and rn := f − sn (with r0 := f ). Then it holds

‖f − sn‖2
HK(Ω) = ‖f − sn−1‖2

HK(Ω) −
(
rn−1(xn)

Pn−1(xn)

)2

.

In particular, for all n ∈ N it holds

i) ‖f − sn‖HK(Ω) ≤ ‖f − sn−1‖HK(Ω) (the error is non increasing w.r.t. ‖ · ‖HK(Ω))

ii) ‖f−sn‖HK(Ω) < ‖f−sn−1‖HK(Ω) if rn−1(xn) 6= 0 (the error is decreasing w.r.t ‖·‖HK(Ω),
if the algorithm selects a point such that the pointwise error is not already zero)

Moreover

iii) f/P -greedy is locally optimal w.r.t ‖ · ‖HK(Ω), i.e., for all n ∈ N the interpolant sn
obtained with xn selected by f/P -greedy satisfies

‖f − sn‖2
HK(Ω) ≤ ‖f − ΠXn−1∪{x}(f)‖2

HK(Ω) for all x ∈ Ω.

Proof. We have from Proposition 6.16 that, for any selection rule,

rn(x) = rn−1(x)− (f, vn)HK(Ω)vn(x).

Using the orthonormality properties of the Newton basis we can compute

‖rn‖2
HK(Ω) =

(
rn−1 − (f, vn)HK(Ω)vn, rn−1 − (f, vn)HK(Ω)vn

)
HK(Ω)

= ‖rn−1‖2
HK(Ω) + (f, vn)2

HK(Ω)‖vn‖2
HK(Ω) − 2(f, vn)HK(Ω)(rn−1, vn)HK(Ω)

= ‖rn−1‖2
HK(Ω) + (f, vn)2

HK(Ω) − 2(f, vn)HK(Ω)(rn−1, vn)HK(Ω).

Moreover, rn−1 = f − sn−1, so rn−1(xj) = 0 for 1 ≤ j ≤ n − 1. In particular, rn−1 ∈
V (Xn−1) from Corollary 4.2, so (rn−1, vj)HK(Ω) = 0 for 1 ≤ j ≤ n−1, since vj ∈ V (Xn−1)
from Proposition 6.14. So using the definition of ṽn we have

(rn−1, ṽn)HK(Ω) = (rn−1, K(·, xn))HK(Ω) −
n−1∑
j=1

vj(xn)(rn−1, vj)HK(Ω) = rn−1(xn),

thus

(rn−1, vn)HK(Ω) =

(
rn−1,

ṽn
‖ṽn‖HK(Ω)

)
HK(Ω)

=
rn−1(xn)

Pn−1(xn)
.
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Since we proved in (ii) of Proposition 6.16 that also (f, vn)HK(Ω) = rn−1(xn)
Pn−1(xn)

, we can
conclude that

‖rn‖2
HK(Ω) = ‖rn−1‖2

HK(Ω) + (f, vn)2
HK(Ω) − 2(f, vn)HK(Ω)(rn−1, vn)HK(Ω)

= ‖rn−1‖2
HK(Ω) −

(
rn−1(xn)

Pn−1(xn)

)2

.

From this formula, points (i) and (ii) follows directly, since all the terms are positive.
Also (iii) follows from this formula, since it holds for all possible new point xn,

and f/P -greedy selects exactly the point that maximizes the term rn−1(xn)
Pn−1(xn)

(Definition
6.17).

Remark 6.20. Some remarks on the result:

• Property (ii) guarantees that the error for f - and f/P -greedy is strictly decreasing until
exact convergence. Indeed, from Definition 6.17 they always select a point xn where
rn−1(xn) 6= 0, unless there is no point x ∈ Ω \ Xn−1 such that rn−1(x) 6= 0. But this
means that rn−1 = 0 in Ω, i.e., sn−1 = f , so the interpolant is exact.

• The error is decreasing w.r.t. the norm of HK(Ω). This implies that also the maximum
error is decreasing, but it does not need to be monotonically decreasing (i.e., it can have
some oscillations).

• We see now also a result on convergence rate of the algorithm for P - and f/P -greedy.
The two results are quite different, because the research topic is still quite ongoing.
In particular, the convergence rate for P -greedy is much faster than the one for f/P -
greedy, although experimentally is clear that the opposite holds.

• Both convergence rates are based on the number n of points, and not on the fill distance
as in the other convergence results that we have seen. This is because, in general, it
can not be expected that the points selected by the algorithm have a small fill distance,
especially for f - and f/P -greedy, which select points which are good for one single
target function f ∈ HK(Ω).

Theorem 6.21 (Convergence rates). Assume the greedy selection is done over Ω. In the
following c, c1, c2 are constants independent of n ∈ N.

For P -greedy it holds the following:

• For SPD kernels which generate Sobolev spaces Hk(Ω) for a given k (in the sense of
Corollary 5.13), it holds for all n ∈ N and f ∈ HK(Ω)

‖f − fn‖L∞(Ω) ≤ cn−k/d+1/2‖f‖HK(Ω).

• For the Gaussian and Inverse Multiquadric kernels it holds for all n ∈ N and f ∈
HK(Ω)

‖f − fn‖L∞(Ω) ≤ c1e
−c2n

1
d ‖f‖HK(Ω).
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For f/P -greedy, we define for M > 0 the set

HK(Ω)M := {f ∈ HK(Ω), f =
∑
j

αjK(·, xj) :
∑
j

|αj| ≤M}.

Then for f ∈ HK(Ω)M it holds for all n ∈ N

‖f − fn‖HK(Ω) ≤M

1 +
n

sup
x∈Ω

K(x, x)

−1/2

.

6.4.4 Implementation

To conclude this part, we see how to practically implement the algorithm. We assume
to run it over a large, given set XN and to know the values {f(xi)}Ni=1. So far we have
seen the following:

• The interpolant sn(x) requires (f, vn) and vn(x).

• (f, vn) requires rn−1(xn) and Pn−1(xn).

• Pn−1(x) requires K(x, x) and vj(x).

• The residual rn(xj) requires f(xj) and sn(xj).

• The selection rules require Pn(x), rn(x).

Thus, all we miss to have a complete computation is a way to compute vj(x) for x ∈ Ω.

Proposition 6.22 (Computation of the Newton basis). Let XN ⊂ Ω and let {vj}Nj=1 be
the Newton basis. Then there exists an upper triangular and invertible matrix B ∈ RN×N

such that for 1 ≤ j ≤ N it holds

vj(x) =
N∑
i=1

BijK(x, xi) for all x ∈ Ω. (6.4)

Moreover, (B−T )ij = vj(xi) and B−T is the Cholesky factor of A, i.e.,

A = B−TB−1.

Proof. Since both {K(·, xj)}nj=1 and {vj}nj=1 are bases of V (Xn) for all 1 ≤ n ≤ N , there
exists an invertible matrix of change of basis such that (6.4) holds.

Morever, B is upper triangular because the n-th Newton basis is an element of
V (Xn), so it depends only on K(·, xi), 1 ≤ i ≤ n, i.e.,

vj(x) =
N∑
i=1

BijK(x, xi) =

j∑
i=1

BijK(x, xi),
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so Bij = 0 for i > j.
Moreover, by orthonormality of the Newton basis it holds

δij = (vi, vj)HK(Ω) =

(
N∑
l=1

BliK(·, xl),
N∑
m=1

BmjK(·, xm)

)
HK(Ω)

=
N∑

l,m=1

BliBmj (K(·, xl), K(·, xm))HK(Ω)

=
N∑

l,m=1

BliBmjK(xl, xm) = (BTAB)ij,

i.e., BTAB = I . Since B is invertible, this implies A = B−TB−1.
We can then evaluate vj(xl) using (6.4) for 1 ≤ j, l ≤ N and obtain

vj(xl) =
N∑
i=1

BijK(xl, xi) = (AB)lj = (B−T )ij.

If we define L := B−T , we have that L is lower triangular (B is upper triangular),
A = B−TB−1 = LLT , and, from (iv) of Proposition 6.14, we have

Lii = (B−T )ii = vi(xi) = Pi−1(xi) > 0

since the power function is positive. This means that this is the unique Cholesky
factorization of A (Proposition ii).

Remark 6.23. Some final comments on this method:

• If n is too large, greedy algorithms behave more or less like the interpolant computed on
the full setXN . In particular, they are not a solution for ill conditioning if n is too large.

• They are usually worse than PUM if the target function f has local features and d =
1, 2, 3.

• On the other hand, they work very well in high space dimension.

• About the selection rules: f/P -greedy gives usually the faster convergence, but becomes
unstable for relatively small n. P -greedy is practically slower, as it ignores f to select
the points, but it is very stable. Usually f -greedy is the best option, as it is sort of
intermediate between the other two.

• There is a demo in ILIAS, with an implementation of the different selection rules. The
practical implementation is just a pivoted Cholesky factorization of the kernel matrix
A of the full set XN , where the pivoting rule is determined by the particular greedy
selection rule.



7. Solution of Partial Differential
Equations

We start a new part, with the goal of approximating the solution of PDEs instead of
approximating functions from pointwise values.

The general goal will be, for Ω ⊂ Rd an open and bounded set, to find u such that

Lu(x) = f(x), x ∈ Ω (7.1)
Bu(x) = g(x), x ∈ ∂Ω,

where L is a linear differential operator and B a linear boundary-value operator. The
typical example is

∆u(x) = f(x), x ∈ Ω

u(x) = g(x), x ∈ ∂Ω.

We will see the following methods:

• Approximation by collocation: it is a generalization of the ideas seen so far,
in the same setting. It comes from looking for an approximate solution which
satisfies the PDE in some given points. Depending on the ansatz, we will have

– symmetric collocation. This is the theoretically motivated one, for which
we will get the full theory.

– non-symmetric collocation. It can be obtained with minor modifications
of the symmetric method, so it is worth having a look. It is also much
used and have some computational advantages, but it is weaker in the
theoretical motivations.

They both can be analyzed in the framework of generalized interpolation.

• For interpolation and pattern analysis, kernel methods are (among) the state of
the art methods. For this kind of applications, instead, there are usually better
alternatives, such as the Finite Element Method. Nevertheless, kernel-based ap-
proximation of PDE is promising in high dimension or for complex geometries,
included problems on manifolds. In particular, they do not require the use of a
mesh (so they are usually called meshless methods).

• We will see also a third method, called RBF-Finite differences (RBF-FD). It has
a clear formulation and clear advantages, but it is not well studied theoretically,
yet. Nevertheless, it works very well, and also outperforms standard methods
in some cases. So it is worth studying.

81
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7.1 Generalized interpolation

We start by studying generalized interpolation problems, which are not necessarily
related to the solution of PDEs. But still we change the notation with respect to the
previous chapters and denote as u ∈ HK(Ω) the unknown target function, to distin-
guish it from the function f which plays the role of the right hand side in (7.1).

So far, we have considered interpolation problems, i.e., we know u through point-
wise values {u(xi)}Ni=1 on XN ⊂ Ω and we require the interpolant to satisfy su(xi) =
u(xi), 1 ≤ i ≤ N . Another way to formulate the problem is to say that we have the set
of functionals

ΛN := {δx1 , . . . , δxN}

and that we require δxi(su) = δxi(u), 1 ≤ i ≤ N . These functionals are linear and
continuous ((i) of Proposition 3.8), and also linearly independent ((iii) of Proposition
3.8).

We can generalize the idea and assume to have general linear and continuous,
linearly independent data functionals ΛN := {λ1, . . . , λN} ⊂ HK(Ω)′, and assume that
we know the unknown function u via the evaluations {λi(f)}Ni=1. For example

• If λi := δxi we have the usual pointwise interpolation data.

• If λi := δxi ◦ Da for a multiindex a ∈ Nd
0, we have additionally information on

the derivative in the point xi. This will be the case in the solution of PDEs.

• When data are of these two types, the problem is called an Hermite-Birkhoff
problem.

• Other cases are possible, for example λi(u) :=
∫
B
u(x)dx with B ⊂ Ω or λi :=

1
M

∑M
j=1 δyj for YM ⊂ Ω.

Given ΛN , a generalized interpolant su of u is defined as follows. We formulate
the problem inHK(Ω), but the definition is valid in any other Hilbert space.

Definition 7.1 (Generalized interpolation). Let Ω ⊂ Rd and K a SPD kernel on Ω.
Let u ∈ HK(Ω) and ΛN := {λ1, . . . , λN} ⊂ HK(Ω)′, and assume that the set of data

{λi(u)}Ni=1 is known.
A function su ∈ HK(Ω) is a generalized interpolant of u with respect to the data func-

tionals ΛN if it satisfies the generalized interpolation conditions

λi(su) = λi(u) 1 ≤ i ≤ N. (7.2)

Remark 7.2. This definition is really a generalization of the usual interpolation, because
when the functional are λi := δxi for xi ∈ XN , the conditions (7.2) are

su(xi) = λi(su) = λi(u) = u(xi) 1 ≤ i ≤ N,

which are the usual interpolation conditions.
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As in the case of standard interpolation, we need to choose a proper finite ansatz
for su, i.e., select a linear and N -dimensional subspace VN := span {v1, . . . , vN} ⊂
HK(Ω) and require that

su(x) :=
N∑
j=1

αjvj(x) x ∈ Ω.

In this way, using the linearity of the data functionals ΛN , we are able to rewrite the
generalized interpolation conditions (7.2) as

λi(su) =
N∑
j=1

αjλi(vj) = λi(u) 1 ≤ i ≤ N.

These conditions can be written, like in the usual interpolation case, as a linear system

AΛα = b,

where now AΛ ∈ RN×N , (AΛ)ij := λi(vj), and b ∈ RN , bi := λi(u).
The choice of the ansatz will make the difference between the symmetric and non-

symmetric approach when solving PDEs, and we will be able to prove that AΛ is
invertible in the symmetric case, so a unique solution exists.

7.1.1 Optimal recovery

If a particular ansatz is used, the generalized interpolation problem can be solved. We
first see how to compute this solution, and then we will prove that it is the optimal
one in some sense. The result can be formulated in a general Hilbert space H of
functions on Ω ⊂ Rd.

Proposition 7.3 (Computation of a generalize interpolant). Let H be an Hilbert space of
functions on Ω ⊂ Rd and let ΛN := {λ1, . . . , λN} ⊂ H ′ be a set of linear and continuous,
linearly independent functionals. Let vj ∈ H be the Riesz representer of λj , 1 ≤ j ≤ N .
Assume that the data λj(u) are know for an unknown function u ∈ H . Consider the ansatz

su(x) :=
N∑
j=1

αjvj(x) x ∈ Ω.

Then there exists a unique vector of coefficients α ∈ RN such that

λi(su) = λi(u) 1 ≤ i ≤ N.

It is the solution of the linear system
AΛα = b, (7.3)

where b ∈ RN , bi := λi(u), and AΛ ∈ RN×N , (AΛ)ij := (vi, vj)H , is positive definite.
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Proof. First, the Riesz representers exist since ΛN are linear and continuous, so su is
well defined.

If we impose the interpolation conditions, by linearity and by definition of Riesz
representers we obtain that

λi(su) = λi

(
N∑
j=1

αjvj

)
=

N∑
j=1

αjλi (vj) =
N∑
j=1

αj (vi, vj)H ,

so α ∈ RN needs to satisfy AΛα = b, with (AΛ)ij := (vi, vj)H .
In particular, AΛ is symmetric. Moreover, we have seen that also the Riesz rep-

resenters are linearly independent if ΛN are linearly independent (proof of (iii) of
Proposition 3.8). This means that the matrix AΛ is also positive definite, since for all
α ∈ RN \ {0}we have

αTAΛα =
N∑

i,j=1

αiαj(vi, vj)H =

(
N∑
i

αivi,

N∑
j=1

αjvj

)
H

=

∥∥∥∥∥
N∑
i=1

αivi

∥∥∥∥∥
2

H

> 0.

So there exists a unique solution su using this ansatz.

As in the case of standard interpolation, there exist in general other ways to obtain
a function that interpolates the data in this generalized sense. As we did in Section
4.1 for standard interpolation, we prove now that the solution of Proposition 7.3 is
optimal in the following sense.

Definition 7.4 (Optimal recovery). Let H be an Hilbert space, ΛN := {λ1, . . . , λN} ⊂ H ′

be a set of linear and continuous, linearly independent functionals. Assume that, for a target
function u ∈ H , we know the data λj(u). Then the optimal recovery problem is to find a
function su ∈ H such that

su := arg min {‖s‖H : s ∈ H,λi(s) = λi(u), 1 ≤ i ≤ N}

Proposition 7.5 (Solution of optimal recovery problem). Let H be an Hilbert space,
ΛN := {λ1, . . . , λN} ⊂ H ′ be a set of linear and continuous, linearly independent func-
tionals. Let vj ∈ H be the Riesz representer of λj , 1 ≤ j ≤ N . Assume that the data λj(u)
are know for an unknown function u ∈ H .

Then the generalized interpolant su ∈ H of Proposition 7.3 satisfies the following:

i) It is the orthogonal projection into VN := span {v1, . . . , vN}.

ii) It is the unique solution of the optimal recovery problem.

iii) It is the best approximation of u from VN , i.e.,

‖u− su‖H = min{‖u− s‖H : s ∈ VN}.

Proof. We have from Proposition 7.3 that su satisfies λi(u) = λi(su) for 1 ≤ i ≤ N .
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(i) Since vi are linearly independent, they are a basis of VN . So it suffices to use the
fact that

(u− su, vi)H = (u, vi)H − (su, vi)H = λi(u)− λi(su) = 0,

to conclude that su is the orthogonal projection of u in VN .

(iii) Since su is the orthogonal projection in VN , it is also the best approximation from
VN .

(ii) As we did for interpolation, we can consider another solution s ∈ H of the gen-
eralized interpolation problem, i.e., a function which satisfies λi(s) = λi(u), and
prove that ‖su‖H ≤ ‖s‖H . This follows with the same argument as in the proof
of Proposition 4.4, i.e., by decomposing s as s = g+g⊥ with g ∈ VN and g⊥ ∈ V ⊥N .

Remark 7.6. Some comments on the Proposition:

• This is exactly what we have done for standard interpolation, just seen in another way.
Indeed, if the functionals are λi = δxi for some points, generalized interpolation is
exactly standard interpolation.

• The reason for considering the native space of a SPD kernel K instead of a general
Hilbert space, in the case of interpolation, is that we need the functionals to be linear
and continuous (i.e., if and only if K is PD) and linearly independent (i.e., K is SPD).
Both facts have been proven in Proposition 3.8.

• In this case, the last Proposition is exactly what we have seen in the case of standard
interpolation: in this case the Riesz representer of λj is K(·, xj), so the ansatz is

su(x) =
N∑
j=1

αjK(x, xj).

The interpolation conditions are su(xi) = λi(su) = λi(u) = u(xi) 1 ≤ i ≤ N . The
matrix AΛ is defined as

(AΛ)ij = (vi, vj)HK(Ω) = (K(·, xi), K(·, xj))HK(Ω) = K(xi, xj),

so it is the usual kernel matrix. The results on optimality are the same that we have seen
in the case of standard interpolation in Section 4.1.

Example 7.7 (Generalized interpolation). We see an example of application of Proposition
7.3 using the native space HK(Ω) of a SPD kernel K. Assume that we want to approximate
a function u : Ω → R with Ω := [a, b] ⊂ R, and that we are given, as usual, a set of points
XN−1 ⊂ Ω and the values {u(xi)}N−1

i=1 .
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This means that we can define an interpolant su by requiring that

λi(su) = λi(u) 1 ≤ i ≤ N − 1,

where λi := δxi . This is just what we have done for interpolation.
Moreover, assume that we know that the target function f has a given mean c :=

∫
Ω
f(x)dx,

and we want to include this condition to improve the interpolant.
A possible way to do so is to consider a discretization YM ⊂ Ω,M ∈ N, withXN∩YM = ∅,

and approximate the integral as

c :=

∫
Ω

f(x)dx ≈ 1

M

M∑
m=1

f(ym).

This gives us another linear functional λN := 1
M

∑M
m=1 δym , and we can add the condition

that λN(su) = λN(u) = c. This functional is linear and continuous on HK(Ω), since it is a
linear combination of points evaluations, which are linear and continuous onHK(Ω).

If we define ΛN := {λ1, . . . , λN}, we have:

• ΛN ⊂ HK(Ω)′.

• ΛN are linearly independent, since XN−1 ∩ YM = ∅ (it would be enough to assume that
YM contains a point that is not contained in XN−1), and we have seen that in the native
space of a SPD kernel {δx : x ∈ Ω} are linearly independent.

Thus we can apply Proposition 7.3 and use the ansatz

su(x) :=
N∑
j=1

αjvj(x),

where vj is the Riesz representer of λj . i.e.,

vj =

{
K(·, xj), 1 ≤ j ≤ N − 1
1
M

∑M
m=1 K(·, ym), j = N,

i.e.,

su(x) :=
N−1∑
j=1

αjK(x, xj) + αN
1

M

M∑
m=1

K(x, ym).

From the proposition, we have that the linear system to solve to find α ∈ RN has a matrix AΛ

with (AΛ)ij = (vi, vj)HK(Ω). This means

(AΛ)ij =



(K(·, xi), K(·, xj))HK(Ω) = K(xi, xj), 1 ≤ i, j ≤ N − 1(
K(·, xi), 1

M

∑M
m=1K(·, ym)

)
HK(Ω)

= 1
M

∑M
m=1K(xi, ym), 1 ≤ i ≤ N − 1, j = N

(
1
M

∑M
m=1K(·, ym), K(·, xj)

)
HK(Ω)

= 1
M

∑M
m=1K(xj, ym), i = N, 1 ≤ j ≤ N − 1

(
1
M

∑M
n=1K(·, yn), 1

M

∑M
m=1K(·, ym)

)
HK(Ω)

= 1
M2

∑M
n,m=1 K(yn, ym), i, j = N.
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Observe that we obtained for all i, j that

(vi, vj)HK(Ω) = λxi λ
y
jK(x, y),

where the superscript x or y means that the functional is applied to the corresponding variable.
This will be true also in the general case.

If we divide the functionals into D := {λ1, . . . , λN−1} and M := {λN}, we obtain that
AΛ has a block structure

AΛ =

[
AD,D AD,M
ATD,M AM,M

]
where AD,D ∈ R(N−1)×(N−1), AD,M ∈ R(N−1)×1, AD,D ∈ R1×1. Each block contains the
evaluations of the functionals M and D in the order specified by the subscript. Also this will
happen in the general case.

Again from the proposition, we have that this matrix is invertible, so a unique solution
exists.

7.1.2 Linear functionals and SPD kernels

To use the generalized interpolant of Proposition 7.3 in the case H = HK(Ω), we need
to:

• Compute the Riesz representer vλ of a general linear functional λ ∈ HK(Ω)′ to
construct the ansatz for su.

• For the Riesz representers vλ, vµ ∈ HK(Ω) of λ, µ ∈ HK(Ω)′, compute the inner
product (vλ, vµ)HK(Ω) to construct the invertible matrix AΛ.

We see in the next proposition that things work as in the case of point-evaluation
functionals discussed in the previous example.

Proposition 7.8 (Linear functionals in HK(Ω)′). Let K be a SPD kernel on Ω 6= ∅. Let
λ, µ ∈ HK(Ω)′ be linear and continuous functionals. Then the following holds:

i) λyK(·, y) ∈ HK(Ω) (as a function of the first variable).

ii) λ(f) = (f, λyK(·, y))HK(Ω) for all f ∈ HK(Ω), i.e., λyK(·, y) is the Riesz representer of
the functional λ.

iii) (vλ, vµ)HK(Ω) = λxµyK(x, y).

Proof. Since λ ∈ HK(Ω)′, by Theorem 3.7 there exists a unique Riesz representer vλ ∈
HK(Ω) such that λ(f) = (f, vλ)HK(Ω) for all f ∈ HK(Ω).

Now fx(y) := K(x, y) is a function of HK(Ω) for all x ∈ Ω by definition of repro-
ducing kernel, as a function of the variable y. So we can apply λ to fx w.r.t. the free
variable y. We use the Riesz representer vλ and the reproducing property to obtain
that

λyK(x, y) = λ(fx) = (fx, vλ)HK(Ω) = (K(·, x), vλ)HK(Ω) = vλ(x).
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This proves that vλ(·) = λyK(·, y), so (ii) is satisfied. Since by definition the Riesz
representer is a function ofHK(Ω), also (i) is proven.

To prove the third points, we use the previous computations and directly obtain

(vλ, vµ)HK(Ω) = λ(vµ) = λ(µyK(·, y)) = λxµyK(x, y).

If we go back to Proposition 7.3, the previous proposition tells us that there exists
a generalized interpolant of the form

su(x) =
N∑
j=1

αjvj(x) =
N∑
j=1

αjλ
y
jK(x, y),

and that the matrix AΛ is defined as

(AΛ)ij = (vi, vj)HK(Ω) = λxi λ
y
jK(x, y),

i.e., everything works as in the example.

7.2 Symmetric collocation

We come back to the solution of the PDE 7.1. The plain application of the previous
results on generalized interpolation leads directly to the formulation of symmetric
collocation.

The idea is the following. To define an approximate solution su ∈ HK(Ω) of the
PDE

Lu(x) = f(x), x ∈ Ω

Bu(x) = g(x), x ∈ ∂Ω,

we consider a set of collocation points XN ⊂ Ω̄, and we require that su satisfies the
equations in these points, i.e.,

(Lsu)(xi) = (Lu)(xi) = f(xi), xi ∈ Ω

(Bsu)(xi) = (Bu)(xi) = g(xi), xi ∈ ∂Ω.

These conditions can be rewritten by defining functionals e.g. λi := δxi ◦L and requir-
ing λi(s) = λi(u) = f(xi). So symmetric collocation fits into the theory of generalized
interpolation.

Definition 7.9 (Symmetric collocation). Let Ω ⊂ Rd be open and bounded and consider
linear differential operators L,B and the problem

Lu(x) = f(x), x ∈ Ω

Bu(x) = g(x), x ∈ ∂Ω.
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For N ∈ N, consider a set of points XN ⊂ Ω̄ and divide them into Nin interior points and
Nbd boundary points, i.e.,

Xin := XN ∩ Ω = {x1, . . . , xNin}, Xbd := XN ∩ ∂Ω = {xNin+1, . . . , xN}.

Define the set of linear functionals ΛN := {λi, . . . , λN} as

λi :=

{
δxi ◦ L, xi ∈ Xin

δxi ◦B, xi ∈ Xbd.

Assume that K is a SPD kernel on Ω such that ΛN are continuous and linear independent on
HK(Ω).

Then the solution by symmetric collocation is defined as the generalized interpolant with
data functionals ΛN , i.e.,

su(x) =
N∑
j=1

αjλ
y
jK(x, y)

=

Nin∑
j=1

αj(δxj ◦ L)yK(x, y) +
N∑

j=Nin+1

αj(δxj ◦B)yK(x, y),

where α ∈ RN is the unique solution of the linear system with matrix (AΛ)ij = (vi, vj)HK(Ω),
i.e., [

ALL ALB
ATLB ABB

]
α =

[
bL
bB

]
,

with ALL ∈ RNin×Nin , ALB ∈ RNin×Nbd , ABB ∈ RNbd×Nbd and

(ALL)ij = (δxi ◦ L)x(δxj ◦ L)yK(x, y), xi, xj ∈ Xin

(ALL)ij = (δxi ◦ L)x(δxj ◦B)yK(x, y), xi ∈ Xin, xj ∈ Xbd

(ALL)ij = (δxi ◦B)x(δxj ◦B)yK(x, y), xi, xj ∈ Xbd.

and bL ∈ RNin , bB ∈ RNbd , (bL)i = f(xi), (bB)i = g(xi).

What is missing is how to find a kernel K such that ΛN are continuous and linear
independent on HK(Ω). We will see in details how to do so in the case L (and B) are
of the following type.

Definition 7.10 (Linear differential operator). Let Ω ⊂ Rd be open and bounded and let
k ∈ N. An operator L : Ck(Ω) → C(Ω) is a linear differential operator of order k with
constant coefficients if there exists coefficients ca ∈ R for a ∈ Nd

0 such that

L :=
∑
|a|≤k

caD
a.
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7.2.1 Differential functionals

What we are left to prove to use symmetric collocation on a linear PDE with L,B as
in Definition 7.10 and k ∈ N is that, for a properly chosen kernel, it holds that the
functionals of type λi := δxi ◦ Da, for a ∈ Nd

0, |a| ≤ k, are continuous in HK(Ω), and
that they are linearly independent for properly chosen collocation points.

In the following, we use again the notation λyK(x, y) to indicate the the functional
λ is applied to the second variable, but also the notation Da

2K(x, y), which again de-
notes that Da is applied to the second variable. The reason for the different notation
is that, to be precise, we should write (δy ◦Da)zK(x, z) do denote the same thing.

We recall a part of Proposition 3.14.

Proposition 7.11 (Native space and smoothness). Let k ∈ N. Assume Ω ⊂ Rd is open,
K is SPD on Ω and K ∈ C2k(Ω × Ω) for k ∈ N. Then HK(Ω) ⊂ Ck(Ω) and in particular,
for all multiindex a ∈ Nd

0 with |a| ≤ k and for all f ∈ HK(Ω), it holds

Daf(x) = (f,Da
2K(·, x))HK(Ω) . (7.4)

To prove this result, we assumed that Da
2K(·, x) ∈ HK(Ω) for all x ∈ Ω and |a| ≤ k.

Under this assumption, setting cx := ‖Da
2K(·, x)‖HK(Ω) we have by Cauchy-Schwarz

that

|Daf(x)| =
∣∣∣(f,Da

2K(·, x))HK(Ω)

∣∣∣ ≤ ‖f‖HK(Ω) ‖Da
2K(·, x)‖HK(Ω) = cx‖f‖HK(Ω),

so λ := δx ◦Da is bounded. So to guarantee that λ := δx ◦Da is linear and continuous
on the native spaceHK(Ω) of a kernel, it suffices to take K SPD and K ∈ C2k(Ω× Ω).

For completeness, we also see a proof of the fact that Da
2K(·, x) ∈ HK(Ω) for all

x ∈ Ω and |a| ≤ k, even if this was not discussed in the lecture. We first need the
following.

Proposition 7.12 (Difference quotient). Let k ∈ N, let Ω ⊂ Rd be an open set, and let
f ∈ Ck(Ω). Let a ∈ Nd

0 with |a| ≤ k and h > 0. For d = 1 (i.e., a ∈ N0), define the difference
quotient as

∆a,hf(x) =
1

ha

a∑
j=0

(−1)a−j
(
a

j

)
f(x+ jh),

and, for d > 1 (i.e., a := (a1, . . . , ad) ∈ Nd
0), as

∆a,hf(x) := ∆x(1)

a1,h
· · · · ·∆x(d)

ad,h
f(x),

where the superscript x(j) means that the difference is applied to the j-th component of x.
Then it holds

lim
h→0

∆a,hf(x) = Daf(x) for all x ∈ Ω, |a| ≤ k.

We then can prove the result.
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Proposition 7.13 (Derivative of the kernel are inHK(Ω)). Let k ∈ N. Assume Ω ⊂ Rd is
open, K is SPD on Ω and K ∈ C2k(Ω× Ω) for k ∈ N. Then for all multiindex a ∈ Nd

0 with
|a| ≤ k and for all x ∈ Ω we have Da

2K(·, x) ∈ HK(Ω).

Proof. First, since K ∈ C2k(Ω × Ω), the function fa(·) := Da
2K(·, y) is a well defined

function on Ω for all a ∈ Nd
0 with |a| ≤ k. Moreover, fa ∈ Ck(Ω).

According to Theorem 3.10, to prove fa ∈ HK(Ω) we need to prove that fa is the
limit of a Cauchy sequence inH0, with

H0 := span {K(·, x), x ∈ Ω} .

The idea is to construct the Cauchy sequence using ∆a,h of Proposition 7.12.
For n ∈ N, we define fn as fn(·) := ∆y

a,1/nK(·, y). The proposition gives that

lim
n→∞

fn(x) = lim
n→∞

∆y
a,1/nK(x, y) = Da

2K(x, y) = fa(x) for all x ∈ Ω.

We see the case d = 1 for simplicity, but the same holds for d > 1.
If d = 1, fn has the form

fn(·) = ∆y
a,1/nK(·, y) =

1

(1/n)a

a∑
j=0

(−1)a−j
(
a

j

)
K

(
·, y +

j

n

)
.

Since Ω is open, if y ∈ Ω and n is large enough, it also holds that all the points
xj := y + j

n
, 0 ≤ j ≤ a are in Ω. This means that fn ∈ H0, as there exist a finite set

XN ⊂ Ω and coefficients {αj(n)}Nj=1 s.t.

fn(·) =
N∑
j=0

αi(n)K(·, xj).

The sequence {fn}n∈N is Cauchy: we have

(fn, fm)HK(Ω) =

(
fm,

N∑
j=1

αj(n)K(·, xj)

)
HK(Ω)

=
a∑
j

αj(n)fm(xj)

=
1

(1/n)a

a∑
j=0

(−1)a−j
(
a

j

)
fm

(
x+

j

n

)
= ∆a,1/nfm(x) = ∆x

a,1/n∆y
a,1/mK(x, y).

It follows that

lim
m,n→∞

(fn, fm)HK(Ω) = lim
m,n→∞

∆x
a,1/n∆y

a,1/mK(x, y)

= lim
n→∞

∆x
a,1/nfa(x) = Dafa(x) = Da

1D
a
2K(x, y),
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since fa ∈ Ck(Ω) (because K ∈ C2k(Ω)). Since the two difference operators act on the
two variables separately, we can exchange the order of the two limits (in n and in m).
In particular, it also holds for n = m. Thus we have

‖fn − fm‖2
HK(Ω) = ‖fn‖2

HK(Ω) + ‖fm‖2
HK(Ω) − 2(fn, fm)HK(Ω),

so

lim
m,n→∞

‖fn − fm‖2
HK(Ω) = (Da

1D
a
2K(x, y))2 + (Da

1D
a
2K(x, y))2 − 2 (Da

1D
a
2K(x, y))2 = 0,

so {fn}HK(Ω) is a Cauchy sequence.
Since {fn}n∈N is a Cauchy sequence in H0, there exists a function f ∈ HK(Ω) with

limn→∞ ‖f−fn‖HK(Ω) = 0. By reproducing property, and since {fn}n∈N is a convergent
sequence inHK(Ω), we can compute

f(x) = (f,K(·, x))HK(Ω) =
(

lim
n→∞

fn, K(·, x)
)
HK(Ω)

= lim
n→∞

(fn, K(·, x))HK(Ω)

= lim
n→∞

fn(x) = Da
2K(x, y),

so Da
2K(x, y) ∈ HK(Ω).

Remark 7.14. This is the first time we see why we need K ∈ C2k(Ω×Ω) to obtainHK(Ω) ⊂
Ck(Ω). Indeed, the condition K ∈ Ck(Ω × Ω) guarantees that the function Da

2K(·, y) is a
well defined continuous function, for |a| ≤ k. To have also that Da

2K(·, y) ∈ HK(Ω), we need
to assume that k additional smooth derivatives exist, i.e., K ∈ C2k(Ω× Ω).

Finally, we have the following result for the linear independence of the function-
als.

Theorem 7.15 (Linear independence of differential functionals). Let K be a SPD trans-
lational invariant kernel on Rd, i.e., K(x, y) := Φ(x − y) for all x, y ∈ Rd. Let k ∈ N and
assume that Φ ∈ L1(Rd) ∩ C2k(Rd).

Let a1, . . . , aN ∈ Nd
0 with |ai| ≤ k, and let XN ⊂ Rd. Assume that ai 6= aj if xi = xj .

Then the functionals ΛN := {λ1, . . . , λN}, λi := δxi ◦ Dai , are linearly independent on
HK(Rd).

Proof. We assume by contradiction that there exists coefficients cj such that
∑N

j=1 cjλj =

0. SinceHK(Rd) by Proposition 7.13, we have also that their Riesz representers are lin-
early dependent, and in particular∥∥∥∥∥

N∑
j=1

cjλ
y
jK(·, y)

∥∥∥∥∥
HK(Rd)

= 0.

We can use now the characterization of the inner product of HK(Rd) in terms of
Fourier transform (Theorem 5.12). It states that if f ∈ HK(Rd), it holds

‖f‖2
HK(Rd) = (2π)−d/2

∫
Rd

|f̂(ω)|2

Φ̂(ω)
dω.
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Since K(x, y) = Φ(x− y), we can simplify the application of the functional λi as

λyiK(·, y) = (δxi ◦Dai)yK(·, y) = (δxi ◦Dai)yΦ(· − y) = (−1)|ai|(DaiΦ)(· − xi).

So we can compute the Fourier transform of λyiK(·, y). We use (v) of Proposition 5.6
(Fourier transform and translation) and the fact that

F (Daf)(ω) = (iω)a(Ff)(ω).

We obtain

F (λyiK(·, y))(ω) = F
(
(−1)|ai|(DaiΦ)(· − xi)

)
(ω) = (−1)|ai|F ((DaiΦ)(· − xi)) (ω)

= (−iω)aiF (Φ(· − xi)) (ω)

= (−iω)aie−ix
T
i ωF (Φ)(ω).

This means that

0 =

∥∥∥∥∥
N∑
j=1

cjλ
y
jK(·, y)

∥∥∥∥∥
2

HK(Rd)

= (2π)−d/2
∫
Rd

∣∣∣∑N
j=1 cj(−iω)aie−ix

T
i ωΦ̂(ω)

∣∣∣2
Φ̂(ω)

dω

= (2π)−d/2
∫
Rd

∣∣∣∣∣
N∑
j=1

cj(−iω)aie−ix
T
i ω

∣∣∣∣∣
2

Φ̂(ω)dω

Since K is SPD, Φ̂ > 0. So we need to have that

N∑
j=1

cj(−iω)aie−ix
T
i ω = 0.

This can be shown to hold if and only if cj = 0 for all 1 ≤ j ≤ N . The proof is technical
(and it does not add too much to this topic), so we omit it. It can be found in Theorem
16.4 in [5].

Remark 7.16. Observe that the theorem proves linear independence on HK(Rd), but this
implies linear independence also onHK(Ω), for any Ω ⊂ Rd (as long asXN ⊂ Ω). Otherwise,
sinceHK(Ω) ⊂ HK(Rd), we would have a contradiction.

7.2.2 Computation of derivatives for RBF kernels

In the case the SPD kernel is radial, i.e., K(x, y) := Φ(‖x − y‖2) for Φ : R≥0 → R, the
computation of derivatives is simple, as it reduces to the computation of the univari-
ate derivatives of Φ. We assume in the following that Φ : R≥0 → R is smooth enough
to compute the derivatives that we will consider.
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For example if d = 2 we consider a point x := (x1, x2)T ∈ R2 (we use this notation
only in this section, instead of (x(1), x(2)) as we did before) and let r(x1, x2) := ‖x‖2 =√
x2

1 + x2
2. For i = 1, 2 we have

∂xir(x1, x2) =
xi√
x2

1 + x2
2

=
xi
r
.

Using the chain rule we have for example

∂xiΦ(‖x‖) = Φ′(r) ∂xir(x1, x2) =
xi
r

Φ′(r),

and for the second order derivative we have

∂2
x2

1
Φ(‖x‖) =

x2
1

r2
Φ′′(r) +

x2
2

r3
Φ′(r)

∂2
x2

2
Φ(‖x‖) =

x2
2

r2
Φ′′(r) +

x2
1

r3
Φ′(r)

∂2
x1x2

Φ(‖x‖) =
x1x2

r2
Φ′′(r)− x1x2

r3
Φ′(r).

In particular, the Laplacian and double Laplacian (which are also radial) can be
obtained as (

∂2
x2

1
+ ∂2

x2
2

)
Φ(‖x‖) = Φ′′(r) +

1

r
Φ′(r)(

∂4
x4

1
+ ∂4

x2
1x

2
2

+ ∂4
x4

2

)
Φ(‖x‖) = Φ′′′′(r) +

2

r
Φ′′′(r)− 1

r2
Φ′′(r) +

1

r3
Φ′(r)

This means, for example, that the Laplacian of the kernel can be obtained as

∆xK(x, y) = Φ′′(‖x− y‖2) +
1

‖x− y‖2

Φ′(‖x− y‖2).

7.2.3 Error analysis - ideas

We give here some ideas on the error analysis for symmetric collocation. The com-
plete discussion is quite involved, but the main ideas are similar to the ones of the
error analysis for interpolation. The full discussion can be found in Chapter 16 of [5].

Assuming that the functionals

{δx ◦ L, x ∈ XN} (7.5)

are linearly independent over HK(Ω), we have from Proposition 7.3 that the matrix
AΛ := (vi, vj)HK(Ω) is positive definite.

If we assume that the condition is true for all x ∈ Ω, i.e.,

{δx ◦ L, x ∈ Ω}
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are linearly independent, we have as a consequence that (7.5) holds for all possible
XN ⊂ Ω pairwise distinct.

Moreover, we have from Proposition 7.8 that

(vi, vj)HK(Ω) = λxi λ
y
jK(x, y) = (δxi ◦ L)x(δxj ◦ L)yK(x, y).

So we can define a function KL : Ω× Ω→ R as

KL(w, z) := (δw ◦ L)x(δz ◦ L)yK(x, y),

and we have that KL is a symmetric and strictly positive definite kernel.
The same holds for KB under the assumption that {δx ◦ B, x ∈ Ω} is linearly

independent overHK(Ω).
In particular, both kernels have a well defined power function.
With some work (which we do not see here) the error

|u(x)− su(x)|, x ∈ Ω̄,

can be bounded using the standard bound of Theorem 4.9 in terms of the power
function of KL or KB, depending on x ∈ Ω or x ∈ ∂Ω.

Then, the estimate of Theorem 4.21 can be applied to find bounds on the error.
They will depend on the fill distances hXin,Ω and hXbd,∂Ω, and on the smoothness of
the kernels KL, KB.

Remark 7.17. Some final comment on symmetric collocation

• We have seen that symmetric collocation is a particular case of generalized interpolation,
with functionals defined by evaluating the PDE in the collocation points.

• To guarantee that the functionals are continuous and linearly independent, we have
seen that it is enough to use a translational invariant kernel K with K ⊂ C2k(Ω× Ω)
(for a PDE of order k).

• To compute the ansatz and the matrix, we need only to compute derivatives of the kernel,
which can be obtained in closed form.

• On the other hand, for a PDE of order k, we need to compute the derivatives of the kernel
up to order 2k, which can be tedious also with RBF kernels.

• This formulation fits into the theory of generalized interpolation, so in particular we
have the existence of a unique solution and some optimality property. This is particu-
larly good e.g. in the case of kernel associated with Sobolev spaces: in this case Propo-
sition 7.5 tells us that we are computing the solution of minimal Sobolev norm (up
to a constant, see Corollary 5.13) among all the solution which satisfy the generalized
interpolation conditions.
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• On the other hand, the problems on ill-conditioning of the linear system occur also in
this case, as for standard interpolation. So the numerical solution is often not as good
as the one obtained with other methods. But also, the algorithms that we have seen in
Chapter 6 can be applied here (with small modifications).

• There is also a possible risk connected with this optimality property: If we consider a
PDE with multiple solutions, e.g., ∆u = f (without boundary conditions), the above
theory guarantees that for any set of collocation points there exists a unique solution su
by symmetric collocation. It will be the one of minimal norm, but it is not necessarily
desirable to have a unique solution of a problem with multiple ones.

• With this formulation, nonlinear PDEs can simply not be solved. Indeed, we need the
Riesz representers, which doesn’t exists for nonlinear functionals.

7.3 Non symmetric collocation

There is also a much easier approach to the solution of PDEs with kernel collocation.
The only difference is that, instead of using the ansatz of Proposition 7.3, we use a
simpler one. This simplification comes at the price that the matrix AΛ is no more
guaranteed to be invertible, and all the optimality properties of Proposition 7.5 are
lost. But experimentally it is quite difficult to find collocation points such that the
matrix is singular, and usually this method works as good as symmetric collocation.
This is also known as method of Kansa.

The idea is still to find an approximate solution su ∈ HK(Ω) of the PDE

Lu(x) = f(x), x ∈ Ω

Bu(x) = g(x), x ∈ ∂Ω

by considering a set of collocation points XN ⊂ Ω̄, and require that su satisfies the
equations in these points, i.e.,

(Lsu)(xi) = (Lu)(xi) = f(xi), xi ∈ Ω

(Bsu)(xi) = (Bu)(xi) = g(xi), xi ∈ ∂Ω.

But now we totally ignore the use of the correct ansatz from generalized interpolation.
We simply use the ansatz for standard interpolation, i.e.,

su(x) :=
N∑
j=1

αjK(x, xj) x ∈ Ω̄.
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Imposing the generalized interpolation conditions results in

λi(su) = (δxi ◦ L)(su) =
N∑
j=1

αj(δxi ◦ L)xK(x, xj) 1 ≤ i ≤ Nin

λi(su) = (δxi ◦B)(su) =
N∑
j=1

αj(δxi ◦B)xK(x, xj) 1 +Nin ≤ i ≤ N.

These conditions can be written as a linear system AΛα = b, where b is as before, but
now AΛ is of the form

AΛ :=

[
AL
AB

]
with AL ∈ RNin×N , AB ∈ RNin×N , and

(AL)ij = (δxi ◦ L)xK(x, xj), xi ∈ Xin, xj ∈ XN

(AB)ij = (δxi ◦B)xK(x, xj), xi ∈ Xbd, xj ∈ XN .

in particular, the matrix is still N ×N , but not symmetric nor positive definite. In
general, there is no guarantee that it is even invertible.

Remark 7.18. Some comments:

• This method is clearly much simpler: The ansatz only requires the kernel and not the
derivatives, the linear system has a simpler matrix (only one application of the func-
tional, not two).

• It is easier to implement: Only one application of the operators on K is required, so
there are less derivatives to compute.

• It does not require the use of a kernel K ∈ C2k(Ω) for a problem of order k. This means
that also the solution su can be less smooth, that is good if we are trying to solve a PDE
that has not too smooth solutions.

• Experimentally, it is usually difficult to find points where AΛ is singular (but of course
it may happen).

• Experimentally, it has similar accuracy than symmetric collocation (different studies
have shown a slightly better behavior of one or the other method).

• There exists optimization or even greedy algorithms that can be applied to this method.
They work by selecting a subset of the collocation points (i.e., a submatrix of AΛ) that is
guaranteed to be invertible.

• In the case that these optimizations are used, there exists error and convergence results
also for this case.

• The method can be extended in principle to non linear PDEs.



8. Support Vector Machines

Richiamo lezione precedente
Di nuovo dividere lo spazio in decision regions
Fare introduzione a parole (compreso idea di support vector - non importa cosa

c’e’ fuori)
Storia: ’63 – ’92
Vapnik (Deep Learning Come from the Devil?)(Facebook AI Research)

8.1 Linearly separable datasets and separating hyperplanes

We start by analyzing the case of XN ⊂ Rd.
We assume in the following that the dataset is such that XN is pairwise distinct,

and both the positive and negative classes are nonempty, i.e., there exist xi ∈ XN such
that yi = +1, and the same for yi = −1.

Definition 8.1 (Linearly separable dataset). A datasetD := (XN , {yi}Ni=1) ⊂ Ω×{−1, 1}N ,
with Ω ⊂ Rd, is linearly separable in Rd if there exist w ∈ Rd and b ∈ R such that

(w, xi) + b > 0, ∀i : yi = +1
(w, xi) + b < 0, ∀i : yi = −1

}
⇒ yi ((w, xi) + b) > 0, 1 ≤ i ≤ N. (8.1)

In this case, the hyperplaneH := H(w, b) := {x ∈ Rd : (w, xi)+b = 0} is called a separating
hyperplane.

The task of classification is to obtain a separating hyperplane by computing suit-
able w, b. Observe that there are two things that makes this task not yet exactly
stated: First, there exist in general infinitely many hyperplanes. Second, any fixed
hyperplane is defined up to scaling of w, b, i.e., for any constant c > 0, we have
H(w, b) = H(cw, cb). To fix both problems, we see the following.

Proposition 8.2 (Distance between XN and H(w, b)). Let D := (XN , {yi}Ni=1) ⊂ Ω ×
{−1, 1}N with Ω ⊂ Rd be a linearly separable in Rd dataset and H(w, b) a separating hyper-
plane. Then the margin γ > 0 can be computed as

γ := dist (XN , H(w, b)) = min
1≤i≤N

yi ((w, xi) + b)

‖w‖
(8.2)

and γ > 0.

Proof. For a given xi ∈ XN , we compute dist (xi, H(w, b)) as the solution of the opti-
mization problem

min
x∈Rd
‖xi − x‖2

s.t.(w, x) + b = 0.

98
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The Lagrangian is

L(x, λ) := ‖xi − x‖2 + λ((w, x) + b) = (xi, xi)− 2(xi, x) + (x, x) + λ(w, x) + λb,

so

∂xL(x, λ) = −2xi + 2x+ λw = 0

∂λL(x, λ) = (w, x) + b = 0.

In particular x = xi − λ
2
w and

0 = (w, x) + b = (w, xi)−
λ

2
‖w‖2 + b,

i.e.,

λ =
2

‖w‖2
((w, xi) + b)).

Thus

‖x− xi‖ =

∥∥∥∥xi − xi − λ

2
w

∥∥∥∥ =

∥∥∥∥(w, xi) + b

‖w‖2
w

∥∥∥∥ =
|(w, xi) + b|
‖w‖

.

So we have, since H(w, b) is a separating hyperplane, that

dist (XN , H(w, b)) := min
1≤i≤N

dist (xi, H(w, b)) = min
1≤i≤N

|(w, xi) + b|
‖w‖

= min
1≤i≤N

yi((w, xi) + b)

‖w‖

Assume now γ = 0. Then there exists xi ∈ XN such that

yi ((w, xi) + b) = 0,

which contradicts the definition of linearly separable dataset.

An hyperplane H has non unique representation, since we can scale w, b. So it is
customary to require the following additional constraint:

Definition 8.3 (Canonical separating hyperplane). Let D, H(w, b) as above. We call
H(w, b) a canonical separating hyperplane if w, b are scaled such that

γ = dist (XN , H(w, b)) =
1

‖w‖
, (8.3)

i.e.,
min

1≤i≤N
yi ((w, xi) + b) = 1. (8.4)

[Plot solution] [remark on independence from other points][remark on (−w,−b): different
decision
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Now we have a unique representation for any given hyperplane, which fixes the
second of the two problems. The first one, i.e., choosing the one hyperplane among
possibly infinitely many, is solved by looking at the maximum margin separating
hyperplane, in the sense of the following definition. It is a meaningful requirement,
since it is the “fairest” hyperplane, in the sense that it is equally distant from the
positive and negative class.

Definition 8.4 (Maximum margin classifier). A maximum margin classifier is a classifier
that provides a separating hyperplane with the largest possible margin γ, i.e., that maximizes
the distance distXN , H(w, b). In particular, the distance to the two classes is equal.

Proposition 8.5. A max. margin, canonical separating hyperplane satisfies, for all xi positive
and xj negative

γ =
1

‖w‖
≤ 1

2
‖xi − xj‖. (8.5)

Proof.

(w, xi) + b = +1

(w, xj) + b = −1

thus

2 = (w, xi − xj) ≤ ‖w‖‖xi − xj‖,

i.e.
γ =

1

‖w‖
≤ 1

2
‖xi − xj‖. (8.6)

8.1.1 Linear, hard margin SVM in primal form

We can now formulate the SVM optimization problem, which is precisely the prob-
lem of finding w, b such that H(w, b) is a maximal margin canonical separating hyper-
plane. We remark that this is the problem in primal form. The actual algorithm will
come to the solution of the dual formulation of the problem.

Definition 8.6 (Primal form of linear, hard margin SVM). Let D := (XN , {yi}Ni=1) ⊂
Ω × {−1, 1}N with Ω ⊂ Rd be a linearly separable dataset. Then the following optimization
problem is called hard margin SVM in primal form:

min
w∈Rd,b∈R

1

2
‖w‖2

2 (8.7)

s.t. yi ((w, xi) + b) ≥ 1, 1 ≤ i ≤ N. (8.8)

If (w∗, b∗) is a solution, the hard margin SVM classifier is defined as

s(x) := sign ((w∗, x) + b∗) . (8.9)
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Remark 8.7. • This problem is clearly the problem of finding a maximal margin separat-
ing hyperplane, according to definition and proposition . The maximization of 1

‖w‖ is
replaced by the equivalent minimization of 1

2
‖w‖2 just for mathematical convenience.

• The optimization problem is quadratic with linear constraints. In particular, it is a
convex optimization problem.

• The assumption that D is linearly separable guarantees that the feasible set is non
empty.

• To be precise, it should be formulated as inf, not min. But we will see that a minimum
exists.

• We see in the following that the hyperplane is also in canonical form.

Proposition 8.8 ((w∗, b∗) define a canonical separating hyperplane). Let (w∗, b∗) be a
solution of (8.41). Then H(w, b) is a canonical hyperplane.

Proof. We need to prove that, if (w∗, b∗) is a minimizer, then it holds

(w∗, xi) + b∗ = +1 for some i s.t. yi = +1

(w∗, xi) + b∗ < −1 for some i s.t. yi = −1,

since for any other i it holds, thanks to the constraints, that yi ((w, xi) + b) > 1.
The argument works as follows: we prove that, if there exists a minimizer (w∗, b∗)

such that

(w∗, xi) + b∗ = +1 for some i s.t. yi = +1

(w∗, xi) + b∗ < −1 for all i s.t. yi = −1

or viceversa for +1,−1 exchanged, then we can construct another minimizer such
that yi ((w, xi) + b) > 1, 1 ≤ i ≤ N . In this case, we find another solution (w′, b′) with
‖w′‖ < ‖w∗‖, which contradicts the minimality of w∗.

Thus, first assume that

(w∗, xi) + b∗ = +1 for some i s.t. yi = +1

(w∗, xi) + b∗ < −1 for all i s.t. yi = −1.

If δ > 0 is small enough, then (w∗, b̄) with b̄ := b∗ + δ satisfies

(w∗, xi) + b̄ > +1 for all i s.t. yi = +1

(w∗, xi) + b̄ < −1 for all i s.t. yi = −1,

i.e., (w∗, b̄) is still a feasible point, with minimal ‖w∗‖, and such that yi
(
(w∗, xi) + b̄

)
>

1, 1 ≤ i ≤ N .
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In the case that (w∗, b∗) is a minimal solution such that yi ((w∗, xi) + b∗) > 1 for
1 ≤ i ≤ N , there exists λ ∈ (0, 1) such that

yi ((λw
∗, xi) + λb∗) = λyi ((w

∗, xi) + b∗) > 1, 1 ≤ i ≤ N.

It follows that (λw∗, λb∗) satisfies the constraints, but, since λ ∈ (0, 1), it holds

‖λw∗‖ = λ‖w∗‖ < ‖w∗‖,

which contradicts the minimality of w∗.

Finally, the problem has a unique solution.

Theorem 8.9 (Existence and uniqueness of solutions). Let D := (XN , {yi}Ni=1) ⊂ Ω ×
{−1, 1}N with Ω ⊂ Rd be a linearly separable dataset such that both the positive and negative
classes are nonempty.

Then there exists a unique solution (w∗, b∗) of the hard margin SVM in primal form, and
w∗ 6= 0.

Proof. It is a strictly convex minimization problem over a convex set, so what can go
wrong is that the solution is an inf, not a min.

Denote as f ∗ the inf of the target function over the feasible set.
Assume that {(wj, bj)}j∈N is a minimizing sequence, i.e, (wj, bj) satisfy the con-

straints and limj→∞ ‖wj‖ = f ∗, with {‖wj‖}j∈N decreasing.
We can assume that the associated separating hyperplanes H(wj, bj) are all canon-

ical (it is just a matter of normalization).
Since the hyperplanes are canonical, we have that

0 ≤ 1

‖w‖
= γ ≤ 1

2
‖xi − xj‖,

i.e., there exists γ′ > 0 such that

2

‖xi − xj‖
≤ ‖w‖ ≤ 1

γ′
,

(first by canonical hyperplane, second by linear separability). This implies that, if a
minimizer w∗ exists, it satisfies ‖w∗‖ > 0.

Moreover, this proves that the sequence {‖wj‖}j∈N is bounded, so (Bolzano-Weierstrass
Theorem) there exists a convergent subsequence {wjk}k∈N with limk→∞ ‖wjk‖ = f ∗.

Let w∗ := limk→∞wjk . Since (·, ·) and ‖·‖ are continuous, also w∗ is a feasible point.
Moreover, also ‖ · ‖ is continuous, so it holds

‖w∗‖ =
∥∥∥ lim
k→∞

wjk

∥∥∥ = lim
k→∞
‖wjk‖ = f ∗,

i.e., w∗ is a minimizer.
Assume now (w′, b′) is another minimizer. We need to have ‖w∗‖ = ‖w′‖.
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If w∗ 6= w′, for all λ ∈ [0, 1], the vector wλ := λw∗+(1−λ)w′ satisfies the constraints
since, for all 1 ≤ i ≤ N ,

yi ((wλ, xi) + b) = λyi ((w
∗, xi) + b) + (1− λ)yi ((w

′, xi) + b)

≥ λ+ (1− λ) = 1.

Moreover, unless w∗ = w′, we have ‖wλ‖ < λ‖w∗‖ + (1 − λ)‖w′‖ = ‖w∗‖ = ‖w′‖ by
strict convexity. So also w′ = w∗.

If b∗ 6= b′, assume b∗ < b′. Since, for all 1 ≤ i ≤ N , both satisfy

yi ((w
∗, xi) + b∗) ≥ 1

yi ((w
∗, xi) + b′) ≥ 1.

Since b∗ < b′, we have

yi ((w
∗, xi) + b∗) > 1 for all i such that yi = −1

yi ((w
∗, xi) + b′) > 1 for all i such that yi = +1.

Thus we can consider the pair (w∗, b
∗+b′

2
). It satisfies

yi

(
(w∗, xi) +

b∗ + b′

2

)
=

1

2
yi ((w

∗, xi) + b∗) +
1

2
yi ((w

∗, xi) + b′) >
1

2
+

1

2
= 1,

so it is feasible. Since the inequality is strictly satisfied, we can shrink w∗ and obtain
a better solution, i.e., there exists λ ∈ (0, 1) such that (λw∗, b

∗+b′

2
) is still feasible, but

‖λw∗‖ < ‖w∗‖, which contradicts the optimality of w∗

Remark 8.10. We have now a well defined optimization problem with d + 1 variables and
N constraints. We have seen that it has a unique solution, so we could be happy with this.
Nevertheless, it is convenient to derive an equivalent formulation of the problem, which will
have N variables and N + 1 constraints. The reason this new formulation is convenient is

• It allows to define the concept of support vectors, and to deduce sparsity of SVM repre-
sentation. This will also allow efficient predictions.

• There will be a very efficient algorithm (better that generic quadratic optimization) de-
rived from this formulation.

• Most important, it allows to introduce kernels via feature maps in an efficient way and
implicitly, so that we can transform the algorithm into a nonlinear one.

min
w∈H,b∈R

1

2
‖w‖2

2 (8.10)

s.t. yi ((w, φ(xi))H + b) ≥ 1, 1 ≤ i ≤ N. (8.11)

prediction:
s(x) := sign ((w∗, φ(x))H + b∗) . (8.12)

We need some results on convex optimization to derive this dual formulation.
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8.1.2 Convex optimization

Sch. Chapter 6.

Definition 8.11 (Convex optimization with linear constraints). Let F ⊂ Rd be convex
and nonempty, f : F → R convex, gi, hj : F → R affine functions for 1 ≤ i ≤ m, 1 ≤ j ≤ l,
l,m ∈ N.

We look at the solution x∗ ∈ F of the problem
minx∈F f(x)
s.t. gi(x) ≤ 0, 1 ≤ i ≤ m

hj(x) = 0, 1 ≤ j ≤ l
(8.13)

Remark: - any local optimum is global
- the set of minimizers is a convex set
- if f strictly convex, the solution is unique (if it exists)
Generalization of Lagrange multipliers for inequality constraints:

Definition 8.12 (Karush-Kuhn-Tucker points). Consider the problem defined in Definition
8.11. For µ ∈ Rm, λ ∈ Rl, define the Lagrangian / Lagrange function

L(x, µ, λ) := f(x) +
m∑
i=1

µigi(x) +
l∑

j=1

λjhj(x).

A point (x∗, µ∗, λ∗) ∈ Rd+m+l is a KKT point if

∂xL(x∗, µ∗, λ∗) = ∇xf(x∗) +
m∑
i=1

µ∗i∇xgi(x
∗) +

l∑
j=1

λ∗j∇xhj(x
∗) = 0 (8.14)

gi(x
∗) ≤ 0, 1 ≤ i ≤ m (8.15)

hj(x
∗) = 0, 1 ≤ j ≤ l (8.16)

µ∗i ≥ 0, 1 ≤ i ≤ m (8.17)
µ∗i gi(x

∗) = 0, 1 ≤ i ≤ m. (8.18)

Theorem 8.13 (KKT points and optimality). Consider the problem defined in Definition
8.11, with f ∈ C1(F ). We have the following:

i) If x∗ ∈ F is a minimizer, then there exists µ∗ ∈ Rm, λ∗ ∈ Rl such that (x∗, µ∗, λ∗) ∈
Rd+m+l is a KKT point (necessary conditions).

ii) If (x∗, µ∗, λ∗) ∈ Rd+m+l is a KKT point, then x∗ is a minimizer (sufficient conditions).
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8.1.3 Linear, hard margin SVM in dual form

Definition 8.14 (Dual form of linear, hard margin SVM). Let D := (XN , {yi}Ni=1) ⊂
Ω × {−1, 1}N with Ω ⊂ Rd be a linearly separable dataset. Then the following optimization
problem is called hard margin SVM in dual form:

max
α∈RN

N∑
i=1

αi −
1

2

N∑
i,j=1

αiαjyiyk(xi, xj) (8.19)

s.t.
N∑
i=1

αiyi = 0 (8.20)

αi ≥ 0, 1 ≤ i ≤ N (8.21)

Proposition 8.15 (Dual and primal SVM). Let α∗ ∈ RN be a solution of (8.19). Define
w∗ ∈ Rd, b∗ ∈ R by

w∗ :=
N∑
i=1

α∗i yixi (8.22)

and b∗ such that, for an arbitrary i with α∗i 6= 0, it holds

yi((w
∗, xi) + b∗) = 1. (8.23)

Then (w∗, b∗) is the unique primal, hard margin SVM (8.41).

Proof. The strategy is to apply the KKT theorem, part 2. In this case the optimization
problem is the SVM primal

min
w∈Rd,b∈R

1

2
‖w‖2

2 (8.24)

s.t. yi ((w, xi) + b) ≥ 1, 1 ≤ i ≤ N. (8.25)

which is of the form of definition
minx∈F f(x)
s.t. gi(x) ≤ 0, 1 ≤ i ≤ m

hj(x) = 0, 1 ≤ j ≤ l
(8.26)

with x = (w, b), F = Rd+1, l = 0, m = N , gi(x) := 1 − yi((w, xi) + b). Moreover, f is
convex, F nonempty and gi affine, so we are in the scenario of the definition.

It follows that the Lagrangian

L(x, µ, λ) := f(x) +
m∑
i=1

µigi(x) +
l∑

j=1

λjhj(x)

is

L(w, b, α) :=
1

2
‖w‖2 +

N∑
i=1

αi(1− yi((w, xi) + b)).
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We can use KKT theorem since f is continuously differentiable. This means that we
prove that (w∗, b∗, α∗) obtained from the dual SVM is a KKT point. It follows from
the theorem that x∗ is a minimizer of the primal SVM (which we proved to be also
unique).

So we need to check the KKT conditions (h is not present)

∂xL(x∗, µ∗, λ∗) = 0 (8.27)
gi(x

∗) ≤ 0, 1 ≤ i ≤ m (8.28)
µ∗i ≥ 0, 1 ≤ i ≤ m (8.29)
µ∗i gi(x

∗) = 0, 1 ≤ i ≤ m. (8.30)

We see them:

• µ∗
i ≥ 0, 1 ≤ i ≤ m : In this case it is α∗i ≥ 0 for 1 ≤ i ≤ N , which is satisfied

because it is one of the constraints definition 8.19.

• ∂xL(x
∗, µ∗, λ∗) = 0 : In this case it is

0 = ∇wL(w∗, b∗, α∗) = w∗ −
N∑
i=1

yiα
∗
ixi ⇔ w =

N∑
i=1

yiα
∗
ixi

0 = ∇bL(w∗, b∗, α∗) = −
N∑
i=1

yiα
∗
i ⇔

N∑
i=1

yiα
∗
i = 0.

The first is satisfied because of the definition of w∗, the second because of the
constraints.

• µ∗
igi(x

∗) = 0, 1 ≤ i ≤ m : In this case α∗i (1− yi((w∗, xi) + b∗)) = 0 for 1 ≤ i ≤
N . We prove that, if α∗i 6= 0, then yi((w∗, xi) + b∗) = 1.

First, observe that, if α∗i 6= 0, then there exists also α∗j 6= 0 with yj = −yi. In-
deed, from the constraint αi ≥ 0 we have αi > 0. Since the second constraint is∑N

i=1 αiyi = 0, then there exists j 6= i with yi = −yj and α∗j 6= 0.

Assume that the index i is the one used for the normalization to define b∗, i.e.,
yi((w

∗, xi) + b∗) = 1. We have the following:

– If α∗j 6= 0 and yj = −yi: we prove that (w∗, xj) = (w∗, xi) − 2
yi

. From this it
follows:

yj ((w∗, xj) + b∗) = −yi((w∗, xj) + b∗) = −yi
(

(w∗, xi)−
2

yi
+ b∗

)
= −yi ((w∗, xi) + b∗) + 2 = 1.

– If α∗j 6= 0 and yj = yi: we prove that (w∗, xj) = (w∗, xi). From this it follows:

yj ((w∗, xj) + b∗) = yi((w
∗, xj) + b∗) = yi((w

∗, xi) + b∗) = 1.
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• gi(x∗) ≤ 0, 1 ≤ i ≤ m : In this case it is yi((w∗, xi) + b∗) ≥ 1 for 1 ≤ i ≤ N .
If αi 6= 0, it follows from the previous point. Assume αi = 0. If we prove that
there exists j 6= i with yi = −yj , αj 6= 0, and such that yj(w∗, xi) ≤ yj(w

∗, xj)− 2,
we have

yi((w
∗, xi) + b∗) = −yj((w∗, xi) + b∗) = −yj(w∗, xi)− yjb∗

≥ −yj(w∗, xj) + 2− yjb∗ = −yj((w∗, xj) + b∗) + 2 = 1.

For simplicity, we collect the three assumptions in a separate proposition, so the proof
is complete.

Proposition 8.16. Assume that the index i is the one used for the normalization to define b∗,
i.e., yi((w∗, xi) + b∗) = 1. Then

i) If α∗j 6= 0 and yj = −yi, then it holds that (w∗, xj) = (w∗, xi)− 2
yi

.

ii) If α∗j 6= 0 and yj = yi, then it holds that (w∗, xj) = (w∗, xi).

On the other hand, assume that i is such that αi = 0. Then

iii) There exists j 6= i with yi = −yj , αj 6= 0, and such that yj(w∗, xi) ≤ yj(w
∗, xj)− 2.

Proof. Assume α∗ is a solution. Assume v ∈ RN is a feasible direction, i.e., there
exists δ > 0 such that for all t ∈ [−δ, δ], we have α∗ + tv feasible. Then by setting
J(α) :=

∑N
i=1 αi −

∑n
i,j=1 yiyjαiαj(xi, xj), we have∇α∗J(α) · v = 0, where

∂αlJ(α∗) = 1−
n∑
j=1

ylα
∗
jyj(xl, xj) = 1− yl

[
n∑
j=1

α∗jyj(xl, xj)

]

= 1− yl

(
n∑
j=1

α∗jyjxj, xl

)
= 1− yl (w∗, xl) .

Now if i is such that yi((w∗, xi) + b∗) = 1 and α∗j 6= 0 and yj = −yi, the vector
v := ei+ ej is a feasible direction. Indeed, taking δ := min(α∗i , α

∗
j ), we have α∗+ tv ≥ 0

(since only α∗i , α∗j are affected, and by definition of δ), and

N∑
l=1

(α∗ + tv)lyl =
N∑
l=1

α∗yl + t
N∑
l=1

vlyl = 0 + tyi + tyj = 0,

since
∑N

l=1 α
∗yl = 0 by constraints.

It follows that

0 = ∇αJ(α∗) · v =
N∑
l=1

(1− yl (w∗, xl))vl

= 1− yi (w∗, xi) + 1− yj (w∗, xj) ,
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thus

yj (w∗, xj) = 2− yi (w∗, xi)

and since yi = −yj we conclude that

(w∗, xj) = (w∗, xi)−
2

yi
.

If instead i is as above (i.e., such that yi((w∗, xi) + b∗) = 1) and α∗j 6= 0 and yj = yi,
the same idea applies with v := ei − ej , and 0 = ∇αJ(α∗) · v implies that (w∗, xj) =
(w∗, xi).

Theorem 8.17 (Existence of solution). Let D := (XN , {yi}Ni=1) ⊂ Ω × {−1, 1}N with
Ω ⊂ Rd be a linearly separable dataset such that both the positive and negative classes are
nonempty.

Then there exists a solution α∗ ∈ RN of the hard margin SVM in dual form.

Proof. We have to show that there exists a solution α∗ ∈ RN of the problem ref, which
we can rewrite as

min
α∈RN

1

2

N∑
i,j=1

αiαjyiyj(xi, xj)−
N∑
i=1

αi (8.31)

s.t.
N∑
i=1

αiyi = 0 (8.32)

αi ≥ 0, 1 ≤ i ≤ N. (8.33)

First, there exists feasible solutions. Indeed, under the present assumptions we proved
in Theorem 8.9 that there exists a unique solution (w∗, b∗) of the primal problem.
Moreover, using Theorem ??, part (ii), we have that there exists (a not necessarily
unique) α∗ ∈ RN , such that (w∗, b∗, α∗) satisfies the KKT conditions. Finally, we
proved in the proof of Proposition 8.15 that the KKT conditions for our problem im-
plies in particular that

∑N
i=1 αiyi = 0 and αi ≥ 0, 1 ≤ i ≤ N . This means that there

exist feasible points.
Then the existence of a solution follows by the same argument of Theorem 8.9,

using a minimizing sequence. The argument works because the constraints are con-
tinuous, and the objective function is in this case

f(α) :=
1

2

N∑
i,j=1

αiαjyiyj(xi, xj)−
N∑
i=1

αi,

which is continuous and convex.

Remark 8.18. Some comments:
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• Observe that to obtain uniqueness in the previous proposition, we would need to have
that the objective function f is strictly convex (as we did in the proof of Theorem 8.9
to prove uniqueness of w∗). But f is not strictly convex in general. Indeed, f can be
written as

f(α) :=
1

2
αTQα− uTα, Qij := yiyj(xi, xj), u := [1, 1, . . . , 1]T ,

and the matrixQ is in general positive semidefinite, sinceXN can be linearly dependent
(and they are for sure if N > d). A sufficient condition for uniqueness is that XN is
linearly independent in Rd, which is not the case in general.

• Even if the dual solution α∗ is non unique, we have that the solutions are a convex
set. Moreover, and more important, we proved that any solution α∗ allows to define
w∗, b∗ such that (w∗, b∗) is the unique solution of the primal problem, i.e., the separating
hyperplane is unique and the classifier s(x) := sign ((w∗, x) + b∗) is uniquely defined.

• Choice of i for b∗. We defined b∗ such that, for an arbitrary i with α∗i 6= 0, it holds

yi((w
∗, xi) + b∗) = 1. (8.34)

We proved that if α∗i 6= 0, then yi((w∗, xi) + b∗) = 1.

• We also proved that, for all 1 ≤ i ≤ N , we have that if α∗i 6= 0, then yi((w∗, xi) + b∗) =
1, and that if yi((w∗, xi) + b∗) > 1, then α∗i = 0. This means that α∗i can be nonzero if
and only if xi is on the boundary. Such xi are called support vectors [Figure]. Observe
that, thanks to non uniqueness of solution, we can have yi((w∗, xi) + b∗) = 1 and
αi = 0.

This is a fundamental property in view of the definition of the classifier,

s(x) := sign ((w∗, x) + b∗) = sign

(
N∑
i=1

αiyi(xi, x) + b∗

)
,

because it means that s can be evaluated using a possibly very small sum.

• zero training error because of linear separability. i.e., if D is the training dataset and
s(x) := sign ((w∗, x) + b∗)), we have Remp(s,D) = 0.

• The KKT condition will be the central tool for deriving the Sequential Minimal Opti-
mization algorithm (SMO). So we rewrite them here

– α∗i ≥ 0,

– w∗ =
∑N

i=1 yiα
∗
ixi and

∑N
i=1 αiyi = 0

– α∗i (1− yi((w∗, xi) + b∗)) = 0,

– yi((w
∗, xi) + b∗) ≥ 1,
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Example 8.19 (Non uniqueness of solutions). A minimal example is the following. Con-
sider X4 with [Figure].

Intuitively, the unique solution of the primal SVM is w∗ = (−1, 0) and b∗ = 0. This
defines the correct classifier

s(x) = sign ((w∗, x) + b∗) = sign
(
−x(1)

)
and it is a canonical hyperplane since yi((w∗, xi) + b∗) = 1 for some i (for all i, in this case).

Since N = 4, we have α∗ ∈ R4. Solutions are

α∗ = [1/4, 1/4, 1/4, 1/4], α∗ = [1/2, 1/2, 0, 0]α∗ = [0, 0, 1/2, 1/2].

(and any convex combination).
To see this formally, we need to show that α∗ satisfies the KKT conditions, i.e.,

• α∗i ≥ 0,

• w∗ =
∑4

i=1 yiα
∗
ixi and

∑4
i=1 αiyi = 0

• α∗i (1− yi((w∗, xi) + b∗)) = 0,

• yi((w∗, xi) + b∗) ≥ 1,

The condition is not necessary: you can try x1 = (−1, 0), x2 = (1, 0), with y1 = 1 = −y2.

8.2 Nonlinear hard margin SVM

Now we formulated the SVM training and prediction in a form that involves xi only
via inner products. We can then map the data with a feature map Φ : Ω → H , and
replace every inner product (x, xi) with K(x, xi) = (Φ(x),Φ(xi))H .

Definition 8.20 (Nonlinear hard margin SVM). Let Ω be an arbitrary nonempty set and
let K : Ω× Ω→ R be a positive definite kernel.

Let N ∈ N and D := (XN , {yi}Ni=1) ⊂ Ω × {−1, 1}N . Assume furthermore that D :=
({Φ(xi)}Ni=1, {yi}Ni=1) ⊂ H ×{−1, 1}N is linearly separable in H , i.e., there exist w ∈ H and
b ∈ R such that

yi ((w,Φ(xi))H + b) ≥ 1, 1 ≤ i ≤ N.

Then the following optimization problem is called nonlinear hard margin SVM:

min
α∈RN

1

2

N∑
i,j=1

αiαjyiykK(xi, xj)−
N∑
i=1

αi (8.35)

s.t.

N∑
i=1

αiyi = 0 (8.36)

αi ≥ 0, 1 ≤ i ≤ N. (8.37)
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The corresponding classifier is defined as

s(x) := sign (f(x)) . (8.38)

where

f(x) =
N∑
i=1

α∗i yiK(x, xi) + b∗

and b∗ is such that
f(xi) = yi

for some i with α∗i > 0.

Remark 8.21. • The definition is another way to write the following: w∗ =
∑N

i=1 α
∗
i yiΦ(xi),

so

(w∗,Φ(x))H + b∗ =
N∑
i=1

α∗i yi(Φ(xi),Φ(x))H + b∗ =
N∑
i=1

α∗i yiK(x, xi) + b∗ = f(x).

The definition of b∗ is: for i such that α∗i 6= 0, let b∗ be such that

1 = yi((w
∗,Φ(xi))H + b∗) = yi(

N∑
i=1

α∗i yiK(x, xi) + b∗) = yif(x), (8.39)

i.e., f(xi) = yi.

• It is difficult in general to understand a priori if a dataset will be linearly separable after
mapping into the feature space. Nevertheless, we know that a solution exists if and only
if the dataset is linearly separable. Thus one option is to try to apply the algorithms,
and it will converge if and only if the data are actually linearly separable. Observe that
this does not imply that the interpolation solution is the SVM solution, and in general
it can be much less sparse.

• The dataset is always linearly separable. Indeed, it is enough to define f(x) =
∑N

i=1 αiK(x, xi)
as the interpolant of XN with target values {yi}. With b∗ = 0.

• The same issue with non unique solutions is present here in the case K is PD but not
SPD. Indeed, the matrix Q of the quadratic form is now the kernel matrix A, which can
be singular.

• Instead, in the case of SPD kernels, the solution is unique.
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8.3 Nonlinear soft margin SVM

Motivation: we want to work with non linear separable data. Also, in some case it
can be beneficial to relax the condition.

This means that we allow some margin violation, i.e., we accept that some point
is not correctly classified.

This is done by using the Hinge loss:

L(x, y, f) := max(0, 1− yf(x)).

[Plot] With f(x) := (w, x) + b. Observe that, when x is correctly classified, we have
L(xi, yi, f(xi)) = 0. The problems arise when yi and f(xi) have different sign (wrong
classification), or when yi((w, x) + b) ≤ 1 (i.e., correct classification but within the
margin). We allow L(xi, yi, f(xi)) > 0, but we want to keep it small.

The balance between exact classification and non exact one is controlled by a pos-
itive parameter C > 0.

Ideally, we would like to minimize

min
w∈Rd,b∈R

1

2
‖w‖2

2 + C
N∑
i=1

L(xi, yi, f(xi)), (8.40)

but this is a nonsmooth problem. So, we can instead replace L(xi, yi, f(xi)) with an
upper bound and minimize it. That is, we introduce slack variables {ξi}Ni=1. We re-
quire that they are an upper bound, i.e.,

ξi ≥ L(xi, yi, f(xi)) = max(0, 1− yif(xi)) ≥ 1− yif(xi) = 1− yi((w, x) + b)

ξi ≥ 0.

Definition 8.22 (Primal form of linear, soft margin SVM). LetD := (XN , {yi}Ni=1) ⊂ Ω×
{−1, 1}N with Ω ⊂ Rd be a dataset with nonempty classes. Then the following optimization
problem is called soft margin SVM in primal form:

min
w∈Rd,b∈R,ξ∈RN

1

2
‖w‖2

2 + C

N∑
i=1

ξi (8.41)

s.t. yi ((w, xi) + b) ≥ 1− ξi, 1 ≤ i ≤ N (8.42)
ξ ≥ 0, 1 ≤ i ≤ N. (8.43)

Remark 8.23. • THis is still a quadratic problem with linear constraints

• If a point is correctly classified and at a distance greater than γ from the separating
hyperplane, then ξi = 0. If it within the margin (correcly or not) it has ξi > 0 (less or
greater than 1 depending on correct or incorrect).

We can do the same process as before to derive a dual problem, prove via KKT
conditions that it is equivalent to the primal, and then introduce a kernel. The final
result is the following.
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Figure 8.1: The function fε.

Definition 8.24 (Nonlinear soft margin SVM). Let Ω be an arbitrary nonempty set and let
K : Ω× Ω→ R be a positive definite kernel.

Let N ∈ N and D := (XN , {yi}Ni=1) ⊂ Ω×{−1, 1}N be a dataset with nonempty classes..
Let C > 0 be a regularization parameter.

Then the following optimization problem is called nonlinear soft margin SVM:

min
α∈RN

1

2

N∑
i,j=1

αiαjyiyjK(xi, xj)−
N∑
i=1

αi (8.44)

s.t.
N∑
i=1

αiyi = 0 (8.45)

0 ≤ αi ≤ C, 1 ≤ i ≤ N. (8.46)

The corresponding classifier is defined as

s(x) := sign (f(x)) . (8.47)

where

f(x) =
N∑
i=1

α∗i yiK(x, xi) + b∗

and b∗ is such that
f(xi) = yi

for some i with α∗i ∈ (0, C).

Remark 8.25. • The only modification is the box constraints, i.e., 0 ≤ αi ≤ C. The
intuition is that without C, the solution would then to produce αi →∞.

• In particular, C →∞ is hard margin.
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• Now the support vectors are more complex:

– If yif(xi) > 1 then αi = 0 not a support vector.

– If yif(xi) < 1 then αi = C bounded support vector (margin violation)

– If yif(xi) = 1 then αi ∈ [0, C] (i.e., still non zero inside the margin)

– If αi ∈ (0, C), then yif(xi) = 1. (i.e., bounded and non zero only if on the margin,
unbounded SV)

• If there exist no bounded support vector, i.e., αi < C for all i, then the data are linearly
separable. It this case soft =hard. Moreover, increasing C will not change the solution.

• If D is the training dataset and s(x) is the soft margin SVM classifier with C > 0,
we have Remp(s,D) ≤ NBSV /N , where NBSV := {i : αi = C}. Indeed, we have
misclassification if and only if yif(xi) < 0.

Semiparametric representer theorem
Derive alternative representation of primal via Hinge loss
KKT holds

8.4 Efficient implementation

We see now ... solution:

• In principle, the problem to be solved is a linearly constrained, convex quadratic
program. Thus, it can be solved by standard solvers (like quadprog in Matlab)

• The problem can be Nevertheless difficult to solve for large amount of data.
There is a specialized algorithm, which is the topic of this section, that works by
splitting the problem into many as small as possible subproblems. It is called
Sequential Minimal Optimization (SMO) and was introduced by John Platt in
1998 at Microsoft Research.

• There are standard and very efficient implementations of this algorithm, and in
general of SVM-related algorithms.

– LIBSVM, from National Taiwan University (https://www.csie.ntu.edu.tw/ cjlin/libsvm/).
Reference implementation. There are interfaces for almost any program-
ming language.

– Both Matlab and Python have built-in solvers: fitcsvm (https://de.mathworks.com/help/stats/fitcsvm.html)
and svmmodule in Scikit-learn (http://scikit-learn.org/stable/modules/svm.html)
(both use SMO, the second directly LIBSVM)

– liquidSVM (http://www.isa.uni-stuttgart.de/software/)
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8.4.1 Computation remarks

• To compute b, instead of picking a random index i such that αi = C, it is com-
mon to average over all i such that αi = C.

• remarks on cross validation, usually using as error function the empirical risk

8.4.2 Sequential Minimal Optimization

• It is an iterative method, i.e., an initial guess for α ∈ RN is improved until
convergence

• The update is made such that the minimal possible number of entries of α are
affected. This makes very large problems easy to solve.

• To decide what entries are to be updated, the algorithm looks at entries that do
not satisfy the KKT conditions.

Define

J(α1, α2, . . . , αN) :=
1

2

N∑
i,j=1

αiαjyiyjK(xi, xj)−
N∑
i=1

αi.

which has to be minimized under the constraints

N∑
i=1

αiyi = 0

0 ≤ αi ≤ C, 1 ≤ i ≤ N.

• We want to find the minimal number of indexes that can be changed at each
iteration. Thanks to the first constraint, it can not be 1:

yjαj = −
∑
k 6=j

αiyi

but with two it works:
yjαj + yiαi = −

∑
k 6=i,j

αiyi

• We can restrict the target function to only the two indexes: in this case, it can be
solved analytically

• Heuristic: if at least one of the two violates the KKT, the objective is strictly
decreased

• In practice: within tolerance

• The first guess is α(0) ∈ RN , which is feasible.
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Algorithm 3 SMO
1: Input: XN , {yi}Ni=1, C > 0
2: Set α(0) := 0, r := 0
3: while α does not satisfy KKT conditions do
4: Choose index i that violates the KKT conditions
5: Choose another index j 6= i
6: Set α(r+1)

k := α
(r)
k for k 6= i, j

7: Set Jij(αi, αj) := J(α
(r)
1 , . . . , α

(r)
i−1, αi, α

(r)
i+1, . . . , α

(r)
j−1, αj, α

(r)
j+1 . . . , α

(r)
N )

8: Set R := −
∑

k 6=i,j ykα
(r)
k

9: Solve (α
(r+1)
i , α

(r+1)
j ) = arg min{Jij(αi, αj) : yiαi + yjαj = R, 0 ≤ αi, αj ≤ C}

10: end while

Solution of the problem. We assume i, j = 1, 2, i.e., we have to solve

(α
(r+1)
1 , α

(r+1)
2 ) = arg min{J12(α1, α2) : y1α1 + y2α2 = R, 0 ≤ α1, α2 ≤ C}

Reparametrize as one-dimensional problem. We assume:

α1(β) := α
(r)
1 + β

α1(β) := α
(r)
2 − y1y2β

They satisfy the constraint since α(r) satisfies the constraints:

y1α1 + y2α2 = y1α
(r)
1 + y2α

(r)
2 + y1β − y1y

2
2β = y1α

(r)
1 + y2α

(r)
2 + y1β − y1β

= 1α
(r)
1 + y2α

(r)
2 = −

∑
k 6=1,2

ykα
(r)
k = R.

Now the objective can be rewritten as a one-dimensional quadratic function:

J12(α1(β), α2(β)) := J(α1(β), α2(β), α
(r)
3 , . . . , α

(r)
N ) = aβ2 + bβ + c

Thus dβJ12(α1(β), α2(β)) = 2aβ + b, i.e.,

β̃ := arg min
β∈R

J12(α1(β), α2(β)) = − b

2a
.

Now we have to check that α1(β̃), α2(β̃) satisfy the remaining constraints, i.e., 0 ≤
α1(β), α2(β) ≤ C.

α
(r)
1 + β ≥ 0⇔ β ≥ −α(r)

1

α
(r)
1 + β ≤ C ⇔ β ≤ C − α(r)

1

α
(r)
2 − y1y2β ≥ 0⇔ β

{
≤ y1y2α

(r)
2 = α

(r)
2 if y1 = y2

≥ y1y2α
(r)
2 = −α(r)

2 if y1 = −y2

α
(r)
2 − y1y2β ≤ C ⇔ β

{
≥ y1y2(α

(r)
2 − C) = α

(r)
2 − C if y1 = y2

≤ y1y2(α
(r)
2 − C) = C − α(r)

2 if y1 = −y2
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This can be written as β̃ ∈ [βmin, βmax] [PLOT], with

βmin :=

{
max{−α(r)

1 , α
(r)
2 − C} if y1 = y2

max{−α(r)
1 ,−α(r)

2 , C − α(r)
2 } if y1 = −y2

βmax :=

{
min{C − α(r)

1 , α
(r)
2 } if y1 = y2

min{C − α(r)
1 , C − α(r)

2 } if y1 = −y2.

So we can clip the result and define

β∗ :=


β̃ if β̃ ∈ [βmin, βmax]

βmin if β̃ ≤ βmin

βmax if β̃ ≥ βmax

and finally

α
(r+1)
1 := α1(β∗), α

(r+1)
2 := α2(β∗).

8.5 Multiclass classification

We assume now that D :=
(
XN , {yi}Ni=1

)
with now yi ∈ {1, . . . , nc}, nc ∈ N is the

number of classes. The idea is to obtain a multiclass classifier by combining different
binary classifiers:

• One-versus-all Iterate over all the classes. For each class j ∈ {1, . . . , nc}, define
a new dataset with same XN , but

y
(j)
i :=

{
+1, if yi = j
−1, if yi 6= j

Train a binary classifier s(j)(x) = sign
(
f (j)(x)

)
on the datasetD(j) :=

(
XN , {y(j)

i }Ni=1

)
.

For classification, assign x ∈ Ω to the class j∗ ∈ {1, . . . , nc} such that

j∗ := arg max
1≤j≤nc

f (j)(x)

Pros: only nc problems must be solved. Cons: each is of size N .

• One-versus-one Iterate over all the disjoint pairs of classes. For each pair (i, j) ∈
{1, . . . , nc}2, i < j, define a new dataset with

X(i,j) := {xk ∈ XN : yk = i or yk = j}

and

y
(i,j)
k :=

{
+1, if yk = i
−1, if yk = j
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Train a binary classifier s(i,j)(x) = sign
(
f (i,j)(x)

)
on the datasetD(i,j) :=

(
X(i,j), {y(i,j)

k }N(i,j)
i=1

)
.

For classification, assign x ∈ Ω by majority vote, i.e., for a given point x all the
classifier are evaluated, giving M predicted classes. The multiclass classifier
then decides for the class that is most frequently predicted (ties can be resolved
e.g. by choosing the smaller class number). Pros: each problem involves only a
small number N(i, j) of points, ideally N(i, j) = 2N

nc
points. Cons: M := nc(nc−1)

2

classifiers have to be trained. Usually less requirements in terms of memory.



9. Unsupervised learning

Mention SVR

• Unsupervised learning: we are given only some data XN ⊂ Ω, and no labels or
numerical values/functions evaluations at XN .

• The goal is to extract meaningful information from XN , to do predictions for a
new x ∈ Ω.

• All the following algorithms can be formulated for Ω ⊂ Rd and in terms of
inner products. The usual kernel trick, with K : Ω × Ω → R a positive definite
kernel, allow to transform them to nonlinear algorithms that work for arbitrary
Ω (provided we can define a kernel on Ω).

• When the kernel is used, all the information we need about the data if the kernel
matrix A. This simplifies implementation and data representation.

• Demos in ILIAS.

9.1 Novelty / outlier detection

• Data XN ⊂ Ω ⊂ Rd

• Goal: find s : Ω→ {−1, 1} to decide if a new point x ∈ Ω is typical with respect
to XN , then s(x) = +1, or if it is an outlier or novel point, then s(x) = −1.

• Idea: find the minimal sphere that enclose the data, and declare a new point an
outlier if it is not in the sphere.

Definition 9.1 (Minimal enclosing sphere, primal formulation). Let XN ⊂ Ω ⊂ Rd.
The minimal enclosing sphere is defined as

min
c∈Rd,r>0

r2 (9.1)

s.t.‖xi − c‖2 ≤ r2, 1 ≤ i ≤ N. (9.2)

The decision function is defined as

s(x) := sign
(
r2 − ‖x− c‖2

)
.

We can first derive the dual problem.
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The Lagrangian is

L(c, r, α) = r2+
n∑
i=1

αi
(
‖xi − c‖2 − r2

)
=

(
1−

N∑
i=1

αi

)
r2+

N∑
i=1

αi
(
‖xi‖2 − 2(xi, c) + ‖c‖2

)
thus

∂rL(c, r, α) = 2r

(
1−

N∑
i=1

αi

)

∂cL(c, r, α) = −2
N∑
i=1

αixi + 2
N∑
i=1

αic

so we can take
N∑
i=1

αi = 1

− 2
N∑
i=1

αixi + 2
N∑
i=1

αic = −2
N∑
i=1

αixi + 2c⇒ c =
N∑
i=1

αixi.

(i.e., the center is a linear combination of the data). Substituting intoL: using
∑N

i=1 αi =

1 and c =
∑N

i=1 αixi

L(c, r, α) =

(
1−

N∑
i=1

αi

)
r2 +

N∑
i=1

αi
(
‖xi‖2 − 2(xi, c) + ‖c‖2

)
=

N∑
i=1

αi‖xi‖2 − 2
N∑
i=1

αi(xi, c) +
N∑
i=1

αi‖c‖2

=
N∑
i=1

αi‖xi‖2 − 2

(
N∑
i=1

αixi, c

)
+ ‖c‖2

N∑
i=1

αi

=
N∑
i=1

αi‖xi‖2 − ‖c‖2

=
N∑
i=1

αi‖xi‖2 −
N∑

i,j=1

αiαj(xi, xj).

From KKT:

αi
(
‖xi − c‖2 − r2

)
= 0, 1 ≤ i ≤ N

thus ‖xi − c‖2 < r2 implies αi = 0. In this sense, only the points on the boundary can
be “support vectors”.

For αi 6= 0, define r := ‖xi − c‖.
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Definition 9.2 (Minimal enclosing sphere, dual formulation). Let XN ⊂ Ω. Le K :
Ω× Ω→ R be a PD kernel on Ω. The minimal enclosing sphere in dual form is defined as

max
α∈RN

N∑
i=1

αi(xi, xi)−
N∑

i,j=1

αiαj(xi, xj) (9.3)

s.t.
N∑
i=1

αi = 0, (9.4)

αi ≥ 0 1 ≤ i ≤ N. (9.5)

The decision function is defined as

f(x) := r2 − ‖x− c‖2 = r2 − ‖x‖2 −
N∑

i,j=1

αiαj(xi, xj) + 2
N∑
i=1

αi(x, xi).

and
s(x) := sign (f(x))

with r > 0 such that for xi with αi 6= 0 it holds f(xi) = 0.

The nonlinear version is immediate.

Definition 9.3 (Nonlinear Minimal enclosing sphere, dual formulation). Let XN ⊂ Ω.
LeK : Ω×Ω→ R be a PD kernel on Ω. The minimal enclosing sphere in dual form is defined
as

max
α∈RN

N∑
i=1

αiK(xi, xi)−
N∑

i,j=1

αiαjK(xi, xj) (9.6)

s.t.
N∑
i=1

αi = 0, (9.7)

αi ≥ 0 1 ≤ i ≤ N. (9.8)

The decision function is defined as

f(x) := r2 −K(x, x)−
N∑

i,j=1

αiαjK(xi, xj) + 2
N∑
i=1

αiK(x, xi).

and
s(x) := sign (f(x))

with r > 0 such that for xi with αi 6= 0 it holds f(xi) = 0.

It is also possible to derive a soft-margin version similar of the SVM case.
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9.2 Feature extraction/Principal component analysis (PCA)

• Data XN ⊂ Ω ⊂ Rd

• Goal: find characteristic feature of the data.

• Idea: find vectors {vi}ni=1, define the characterizing features as fi(x) := (x, vi).
This is equivalent to find a change of coordinates, where the first coordinates
are the most relevant for the given dataset.

• This works as data compression if n ≤ d.

A linear version can be defined as follows: we look for a vector v1 that maximizes
the alignment with the data, i.e.,

v1 := arg max
v∈Rd

N∑
i=1

(xi, v)

‖v‖2

at step k > 1, we define

vk := arg max
v∈Rd

(v,vj)=0,1≤j<k

N∑
i=1

(xi, v)

‖v‖2

If we define the matrix X ∈ RN×d with X :=

 xT1
...
xTN

, this can be reformulated as

vk := arg max
v∈Rd

(v,vj)=0,1≤j<k

‖Xv‖2

‖v‖2
= arg max

v∈Rd
(v,vj)=0,1≤j<k

vTXTXv

vTv
,

i.e., the directions vk are the eigenvalues of the matrix XTX ∈ Rd×d (or the singular
values of X). Since XTX is symmetric and positive semidefinite, there exists λ1 ≥
λ2 ≥ · · · ≥ λd ≥ 0 such that XTXvi = λivi. The eigenvalues can be used to measure
how relevant a feature is, i.e., one can consider only n ≤ N with λn > τ .

We need to find a kernelizable version, i.e., to find {αij : 1 ≤ i ≤ d, 1 ≤ j ≤ N}
such that

vi =
N∑
j=1

αijxj = XTαi.

if αij = (αi)j . In this way the feature functions can be computed as fi(x) = (vi, x) =∑N
j=1 αij(x, xi).
This can be solved as follows: let αi ∈ RN be an eigenvector of the matrix XXT ∈

RN×N , i.e., XXTαi = λiαi. Then we have

XTXvi = XTXXTαi = XT
(
XXTαi

)
= XT (λiαi) = λiX

Tαi = λivi.
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Definition 9.4 (Kernel PCA). Let XN ⊂ Ω. Le K : Ω × Ω → R be a PD kernel on Ω. Let
n ≤ N .

Let αi := [αij]
N
j=1 be the eigenvectors of the kernel matrix A, sorted accordingly to the

eigenvectors λ1 ≥ λ2 ≥ · · · ≥ λN ≥ 0. The the features of the kernel PCA are defined as

fi(x) :=
N∑
j=1

αijK(x, xj).

Remark 9.5. • The linear PCA can provide only d linear features, while the kernel one
up to N nonlinear ones.

• Using a SPD kernel one can guarantee that all the N provide fi(x) 6= 0 for all x ∈ Ω,
since all the eigenvalues are non zero.

• The solution can be very difficult, since one needs to compute an eigendecomposition of
the full and dense kernel matrix. Approximate solvers can be used if only a few features
are needed.

9.3 Clustering

• Data XN ⊂ Ω ⊂ Rd

• Goal: group the data into k ∈ N, k ≤ N disjoint sets of “similar” data (clusters).

• Idea: find a set of points (centers) {µj}kj=1 ⊂ Ω and assign each point to the
closest one.

• The problem is hard, and finding a global optimum is in general infeasible.
Instead, there is an iterative algorithm that works well.

We denote the i-th cluster as Ci, i.e.,

Ci := {x ∈ XN : ‖x− µi‖2 ≤ ‖x− µj‖, j 6= i}.

Ideally, we would like to find {µj}kj=1 ⊂ Ω such that

min
{µj}kj=1⊂Ω

k∑
i=1

∑
xj∈Ci

‖x− µi‖2

Decision function:
s(x) := arg min

1≤j≤N
‖x− µi‖2

Definition 9.6 (k-means clustering). Algorithm here.
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Remark 9.7. • The choice of the initial centers can be made in other ways, and it strongly
affects the results.

• The number k of clusters can be unclear in general. A common way to find a good one
is to run the algorithm for various k and define

J(k) :=
1

k

k∑
i=1

∑
xj∈Ci

‖x− µj‖.

This quantity is decreasing in k, and one can find a suitable k when J(k) slows down.

• problems with empty clusters.



Bibliography

[1] G. E. Fasshauer. Meshfree Approximation Methods with MATLAB, volume 6
of Interdisciplinary Mathematical Sciences. World Scientific Publishing Co. Pte.
Ltd., Hackensack, NJ, 2007. With 1 CD-ROM (Windows, Macintosh and UNIX).

[2] G. H. Golub and C. F. Van Loan. Matrix Computations. Johns Hopkins Studies in
the Mathematical Sciences. Johns Hopkins University Press, Baltimore, MD, third
edition, 1996.

[3] B. Schölkopf and A. J. Smola. Learning with Kernels: Support Vector Machines,
Regularization, Optimization and Beyond. MIT Press, 2002.

[4] I. Steinwart and A. Christmann. Support Vector Machines. Information Science
and Statistics. Springer, New York, 2008.

[5] H. Wendland. Scattered Data Approximation, volume 17 of Cambridge Mono-
graphs on Applied and Computational Mathematics. Cambridge University
Press, Cambridge, 2005.

125


	Introduction and motivation
	Definitions of kernel and positivity classes
	Why we are interested in kernels
	Multivariate scattered (or meshless) interpolation
	Mapping linear algorithms in high dimensional spaces

	Questions to be addressed

	Basic properties and examples of kernels
	Criteria for (S)PD
	Properties of (S)PD kernels
	Basic operations on kernels
	Examples of kernels

	Kernels and Hilbert spaces
	Reproducing kernel Hilbert spaces
	Properties
	Characterization

	The native space of a PD kernel
	Consequences on K
	Consequences on 
	Consequences on HK ()
	Basic operations on HK ()


	Interpolation in native spaces
	Optimality of kernel interpolation
	Simple bounds
	General error bounds and the power function
	Properties of the power function

	General stability bounds
	Error bounds
	Interpolation points
	Interpolation set
	Error bound


	Translational invariant and RBF kernels
	Characterization of translational invariant and radial kernels
	Translational invariant PD kernels and Fourier transform
	A more simple characterization

	Sobolev spaces and native spaces
	Compactly supported RBF kernels
	Remarks on compactly supported kernels
	Wendland kernels

	Error bounds revisited

	Algorithms for kernel interpolation
	General considerations
	Train/validation/test sets
	Vector valued functions

	Regularized interpolation
	Partition of unity method
	Greedy kernel interpolation
	The Newton basis
	Interpolation with the Newton basis
	Selection rules and error
	Implementation


	Solution of Partial Differential Equations
	Generalized interpolation
	Optimal recovery
	Linear functionals and SPD kernels

	Symmetric collocation
	Differential functionals
	Computation of derivatives for RBF kernels
	Error analysis - ideas

	Non symmetric collocation

	Support Vector Machines
	Linearly separable datasets and separating hyperplanes
	Linear, hard margin SVM in primal form
	Convex optimization
	Linear, hard margin SVM in dual form

	Nonlinear hard margin SVM
	Nonlinear soft margin SVM
	Efficient implementation
	Computation remarks
	Sequential Minimal Optimization

	Multiclass classification

	Unsupervised learning
	Novelty / outlier detection
	Feature extraction/Principal component analysis (PCA)
	Clustering


